
x86_64 Assembly Tips & Tricks
EN 601.229: CSF @ JHU

Version 0.1.1

The CSF Course Staff (Max Hahn)

September 25, 2022

Contents

1 Notice 3

2 Introduction 4

3 Basics 4

3.1 Conventions used in this text . 4

3.2 Terminology . 4

4 Mechanics 5

4.1 Reference resources . 5

4.2 Memory references . 5

4.3 Assembler directives . 7

4.4 Sections . 7

4.5 Immediates, labels, and registers . 8

4.6 Signed/unsigned numbers . 10

4.7 Argument passing . 10

4.8 Odd instructions . 10

5 Best Practices 11

5.1 Follow the calling conventions . 11

5.1.1 Alignment . 12

1

5.1.2 Callee vs. Caller saved registers . 13

5.1.3 Beware of clobbering the stack . 15

5.1.4 RSP can be moved down further to create free real estate 15

5.2 The operands for AT&T syntax are reversed 15

5.2.1 Subtraction and compare have reversed operands 16

5.3 Beware the width suffixes when using memory references 16

5.3.1 Use the ”width changing mov” to widen registers 16

5.4 Assembly code executes linearly in the absence of control flow 17

5.5 Write useful comments . 18

5.6 Debug using GDB . 19

5.7 Optional: Use ABI compliant stack frames for sensible backtraces 21

6 Pitfalls 23

6.1 Don’t map C variables to registers 1:1 . 23

7 Listing and table indexes 25

2

1 Notice

This document is copyrighted by the authors, and is made available under the terms of the
Creative Commons CC-BY-SA 4.0 International license. Modification and redistribution is
allowed subject to the terms of the license. The document’s source code can be found at
https://github.com/jhucsf/csfdocs.

We politely request that if you make improvements to this document, that you let the CSF
course staff know so that we can incorporate your changes. The jhucsf Github organization
web page has contact information.

3

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/jhucsf/csfdocs
https://github.com/jhucsf
https://github.com/jhucsf

2 Introduction

This document summaries the key takeaways of the hundreds of discussion posts and ques-
tions we have encountered during the assembly portion of the class in the years we have
offered this course. It is not intended to be read cover-to-cover (though you are free to do
so); instead it is meant to serve as a reference to help you out as you encounter difficulties
in the course of completing the assignments. The document is indexed, and should have
PDF bookmarks to each section. We hope this document will be helpful!

3 Basics

3.1 Conventions used in this text

1. text will denote a snippet from a program such as a register name, instruction, or
other text from a programming language.

2. [thing] will indicate that [thing] is a placeholder meant to be replaced in actual
usage.

3. longer form examples will be in monospaced block listings.

4. some_link will denote a link and should be clickable in any competent PDF viewer.

3.2 Terminology

Here is a brief glossary of the unfamiliar terms used in this document:

1. ABI - Application Binary Interface, refers to the set of contract between applications
and the kernel and includes things such as the calling convention, syscall convention,
stack frame layout, and how memory spaces are provisioned for each process. Differs
by operating system and underlying hardware. In this class, we are targeting x86_64
Linux, so we will be following the x86_64 System-V ABI.

2. Calling Convention - Rules that functions must follow on how they call other functions,
and how they will handle global state such as registers and the stack.

3. Stack frame - A collection of all the information (non-register local variables) needed
for a function call’s execution. Created by the combination of the call instruction
and any function preamble operations (the part of the function before the main body
where rsp is adjusted, rbp is saved, and registers are prepared for use).

4. Alignment - Ensuring that data structure starts on a address that is a well defined
multiple of a power of two. Often required because certain memory access patterns
require this at the hardware level.

4

some_link

5. Stack - Region of program memory that grows downwards from the “top” of a memory
segment. Used to keep track of function calls, function local variables, and small bits
of extra data.

6. Heap - Region of program memory that grow upwards from the “bottom” of a memory
segment. Used for dynamic memory allocation (out-of-scope for this document).

4 Mechanics

We’ll briefly cover some important topics that don’t have very good coverage in the usual
resources here.

4.1 Reference resources

Here are some basic assembly references that students have found to be helpful in the past:

1. The classic BrownU reference docs. They are using AT&T syntax, so the examples
are completely compatible with the assembler we want you to use in this class.

2. UVA’s intro guide. (Beware the instruction operand order! This is Intel syntax which
is the reverse of the AT&T syntax used in this class.)

3. Intel’s own intro docs (Beware the instruction operand order! This is intel sytax,
which is the reverse of the AT&T syntax used in this class.)

4. A good reference for the register breakdown: wikibooks.

5. A comprehensive reference for x86 instructions. Prefer this over the BrownU doc if
you need to know exactly which forms of an instruction are valid, since BrownU’s
doc leaves out a few valid forms that make life better. This is built from the Intel
reference manuals, so it is always correct, but has the reversed instruction operand
order.

4.2 Memory references

Most x86 instructions can access at least one memory location (i.e. perform the equiv-
alent of the C memory operation *var). This is done by replacing one of the normal
instruction operands with the memory reference syntax offset(base_address, index,
index_size). offset is an integer literal, base_address is a 8-byte register, index is
an 8-byte register, and offset_size is one of 1, 2, 4, or 8. This will compute offset +
base_address+index∗index_size, and dereferences the computed address to get the value
in memory.

The offset is meant to be used to add a constant index to a memory address and may be
negative (e.g. if you want to index stack space you created by moving rsp). The index

5

https://cs.brown.edu/courses/cs033/docs/guides/x64_cheatsheet.pdf
https://www.cs.virginia.edu/~evans/cs216/guides/x86.html
https://www.intel.com/content/dam/develop/external/us/en/documents/introduction-to-x64-assembly-181178.pdf
https://en.wikibooks.org/wiki/X86_Assembly/X86_Architecture
https://www.felixcloutier.com/x86/

is meant to help with basic array indexing operations, which is why the index_size is
configurable. Any unused components may be left out, and offset will default to 0, index
will default to 0 and index_size will default to 1.

Here are some example of this syntax, used with the mov instruction:
movq $(%rax), %rcx /* C equivalent: uint64_t rcx = *rax */
movb $(%rax), %cl /* C equivalent: uint8_t cl = *rax */
movq -128(%rax), %rcx /* C equivalent: uint64_t rcx = *((uint64_t*)(((uint8_t
*)rax) - 128)) */
movb (%rax, %rcx, 4), %dil /* C equivalent: uint8_t rdx = rax[rcx] */
movl (%rax, %rcx, 4), %edx /* C equivalent: uint32_t rdx = rax[rcx] */
movq (%rax, %rcx, 8), %rdx /* C equivalent: uint64_t rdx = rax[rcx] */
/* you can drop the item size component if each item in the index data is 1-
byte... */
movb (%rax, %rcx), %dil /* C equivalent: uint8_t dil = rax[rcx] */
/* ...or you can also apply an offset */
movq -256(%rax, %rcx, 8), %rdx /* C equivalent: too hard to write :) */
/* note that register, memory ordering also works for most instructions...*/
movq %rdx, (%rax, %rcx, 8) /* C equivalent: uint64_t rdx = rax[rcx] */
/* ...and that most instructions can take one */
incq (%rax) /* (uint64_t) rax += 1 */

Listing 1: Accessing memory references

Notice that the size of the items in the array must be consider when computing offsets and
indices, unlike C, where the compiler automatically adjusts this to the declared type in
pointer arithmetic or array indexing.

Generally speaking, most assembly instructions will only take one memory reference:
/* incorrect, will not assemble */
movq (%rax), (%rcx)
/* correct, must use intermediate register */
movq (%rax), %rdx
movq %rdx, (%rcx)

Listing 2: Using multiple memory references correctly

Sometimes the address of a memory reference is desired instead of a dereference value from
a pointer (i.e. the equivalent of the & operator in C). To do this, you can use leaq [memory
reference expression], [dest register]:

/* roughly equivalent to uint64_t* rdx = &rax[rcx] */
leaq (%rax, %rcx, 8), %rdx
/* Can also use with an offset, for things like stack frame locations */
leaq -128(%rax, %rcx, 8), %rdx

Listing 3: leaq instruction example

The leaq instruction computes the value of offset + base_address + index ∗ index_size
and stores it in the destination register using addressing hardware. In essence, it is just
a special case of a series of three math instructions that completes much faster (and thus
leaq (%rax), %rcx is exactly equivalent to movq %rax, %rcx).

6

4.3 Assembler directives

In this class, we are using the GAS (GNU ASsembler) with AT&T syntax, as it is the
standard toolchain for Linux. The capital .S file denotes that the file will be preprocessed
using the C preprocessor, so you are free to create named constants using the #define
directive. Any line in the .S file that begins with a . character is an assembler directive,
and generally is not directly emitted into the executable like the instructions are. You
should beware for the following directives:

1. .section [name] - specifies which segment in memory the following lines will be
placed in. More on this in the next section.

2. .string "[str]" - use after a label in the .rodata section to create add string literal
that can be referenced from later code.

3. .space [size in bytes], [fill val] - use with a label in the .data section to
specify a statically allocated mutable global area of memory (e.g. for global arrays).

4. .globl [label] - marks the label [label] as a global symbol, which allows it to be
exported from .o file. These should correspond to any functions you have declared
in your .c file without the static keyword in the function signature. If you get a
”undefined symbol ...” error when you try compile your assembly implementation, you
probably forgot to add this directive to the symbol.

4.4 Sections

As you will learn later in the course, a modern elf executable (the application binary format
on Linux) will place its code an data into segments, each with different permissions. This
is an important part of the security model, as we should not be able to execute parts that
contain data (such as strings and constants), while we should not be allowed to modify
executable areas of the binary at runtime. In higher level languages, the compiler handles
splitting everything apart and putting them in the right sections for you. In assembly, you
have to specify this yourself. a section direction is valid until another one is encountered in
the file.

The primary sections of interest for this class are

1. .text - The section where executable code should code. You must ensure that
.section .text is present before any assembly instructions in every assembly file
you write to prevent permission error and segfaults in the final binary.

2. .rodata - Read-only global data. This includes string literals and constants. Anything
that should not be executable or modifiable at runtime should go here.

3. .data - Mutable global data. This can be an easier way to allocate things like local
arrays in non-recursive functions, but do note that this makes them effective global
variables.

7

Here is an example layout for a .S file:
.section .rodata
/* everything below here will be placed in the .rodata section */
helloStr: .string "Hello!"
goodbyeStr: .string "goodbye!"

.section .data
/* everything below here will be placed in the .data section */
mutableGlobalArray: .space 100, 0 /* array of 100 bytes, e.g. char[100] */

.section .text
/* everything below here will be placed in the .text section */
.globl myFun
myFun:

/* body of myFun */
ret

Listing 4: .S file section layout

4.5 Immediates, labels, and registers

Immediates are things we would generally consider to be literals in C programs, and are
emitted directly into the assembly stream as part of the instruction encoding. In the AT&T
syntax we use, they must be prefixed with a $. For instance, the C assignment rax = 153
should be written as movq $135, %rax.

Registers are the special locations that instruction may directly operate on, are shared
global state (the mental model is 16 global variables), and must be prefixed by % in the
assembly syntax. E.g. to access the register rax, you must use %rax in the assembly code.

Labels allow a location (address) in the assembly to be given a name, and look like
[labelname]: immediately before the assembly instruction, or directive it should be at-
tached to. Labels that begin with .L will be treated as local labels by the assembler and
will not appear as a function in GDB. However, all label names in a file must be unique;
there is no such thing as a true scope-local label.

Using the immediate prefix with a label resolves to the absolute address of the label (i.e.
gets the pointer defined by the label). Using the label name without the immediate prefix
dereferences the label address to get the value in memory at the label.

Labels may not be indexed using the memory reference syntax above. If a label is attached
to an array, the label’s address must first be loaded into a register before it can be indexed.
A register may not be converted into an address; if a function requires a pointer(e.g. scanf
and friends), then either stack memory or labeled space in the .data section must be used.
This is illustrated below:
.section .rodata:

/* read-only array of ten 64 bit integers */
globalArray: .quad 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

8

readString: .string "%ld"
writeString: .string "number: %ld\n"

.section .text

.globl fun
fun:

pushq %rbp
movq %rsp, %rbp
/* Stack frame:
* -8(%rbp) - 64-bit alignment padding
* -16(%rbp) - var int64 input_long
*/
subq $16, %rsp
pushq %r12
pushq %r13

/* read a number from stdin into input_long */
xorl %eax, %eax /* efficient way to zero a register (see section 5.3.1) */
movq $readString, %rdi
leaq -16(%rbp), %rsi
callq scanf

/* now loop over our array, and add the read in number to each cell */
/* we need to use callee-save registers here since the printf call

will kill caller-save registers */
movq $globalArray, %r12 /* load the array's base address into a callee-save

register */
xorq %r13, %r13 /* zero loop counter (also must be callee-save since

printf is called in loop*/
jmp .LloopCond /* jump should not have the immediate prefix on the label */

.LloopTop:
xorl %eax, %eax
movq $writeString, %rdi /* load printf fmtstring into first arg */
movq (%r12, %r13, 8), %rsi /* load globalArray[i] into second function arg */
/* note for performance reasons, we should load -24(%rbp) into a register

if the loop happens mroe than a few times */
addq -16(%rbp), %rsi /* globalarray [i] + input_long */
callq printf
incq %r13 /* increment loop counter */

.LloopCond:
cmp $10, %r13
jb .LloopTop /* jump while loop counter is < 10 */

/* demonstrate that using a label without the $ is a deref */
/* print first value in array */
xorl eax, eax
movq $writeString, %rdi /* load format string into first arg */
movq globalArray, %rsi /* load *globalArray into second arg */
callq printf

/* clean stack frame */

9

popq %r13
popq %r12
addq $16, %rbp
popq %rbp
ret

Listing 5: Labels and immediates

4.6 Signed/unsigned numbers

Since the native signed number representation on x86 is 2’s complement, the additional and
subtraction opcodes work the same for both unsigned and signed numbers (they set both
sets of internal flags). The distinction is made in the multiply and divide instructions (imul
signed multiply, mul unsigned multiply, idiv signed divide, div unsigned divide), and in
the conditional jump instructions (jae, ja, jbe, jb (a is a mnemonic for above, e is the
mnemonic for equals, b is the mnemonic of below, corresponding to unsigned greater than
and less than), jgt, jg, jle, jl for the unsigned versions).

Reference this link for a full list of conditional jump instructions.

4.7 Argument passing

In a vast improvement to the 32-bit calling conventions, the Unix x86_64 calling conventions
allow the first six arguments to a function to be passed using registers. Thus you probably
want to keep the number of function arguments in your functions to no more than six
arguments. Reference table 1 for details on which registers are used to pass which argument.
Floating point arguments are passed using a different mechanism, and are out of scope for
this document.

4.8 Odd instructions

Some notes on various instructions in no particular order:

1. Explanation for the zeroing idiom used in this doc: When zeroing a register, xor r,
r is the most efficient way to do this on modern CPUs, instead of a mov instruction.
(For the first eight registers, since touching the 32-bit subregister zeroes the upper
32-bit, it’s slightly preferable to zero the 32-bit subregister even when using the full
register, as the instruction encoding is slightly shorter)

2. The shift instruction takes either an immediate or register for the shift amount (shr,
shl). If using the register form, it can only take the %cl register as the shift amount.
Attempting to use any other register will give an ”unknown opcode” error (e.g. shrq
%cl, %rax is a valid shift of rax right by the value of cl, shrq %rdx, %rax is not).
For a 64-bit instruction, the value of %cl is masked to 6-bits (only the lowest 6 of the

10

https://www.felixcloutier.com/x86/jcc

8 bits will be used to determine the shift), which is the underlying reason why shifting
by an amount >= to the width of an integer is undefined behaviour in C. (the mask
is 5-bits for any narrow forms of the shift instruction)

3. The two operand form of imul is restricted to registers of with 16 or above. If operating
on 8-bit registers, only the single operand form is defined.

4. mul and div only exist in single operand forms. Refer to the reference docs for more
details on the implicit registers used by those instructions.

5. When using div on anything wider than 8-bits, remember that the dividend must be
zero-extended to its corresponding register pair (div uses double width dividends).

6. When using idiv, the dividend must be sign extended to its register pair. This is
done with cbtw, cwtl, cltq, and cqto for sign-extending a 1, 2, 4, 8 byte register for
signed division. These always operate on various subregisters of the rax register and
the widest three will sign extend to subregisters of rdx as needed.

7. When using functions that take variable numbers of arguments (e.g. the printf
family and the scanf family), %rax must be zeroed before each call if no floating
point (vector) arguments are passed. Failure to do this can lead to segfaults and
other undefined behavior in rare cases.

5 Best Practices

Unless you know exactly what you are doing, and the full implications of violating a guide-
line, follow these strictly!

5.1 Follow the calling conventions

In this class, we will be adhering to the standard x86_64 Linux calling conventions. Do
not violate any of the ”rules” in this guideline, even for tiny helper functions that you can
rigorously analyze.

Motivations: Calling conventions exist to allow functions to be constructed and analyzed
independently of each other, while providing a uniform way for the application to interact
witht he underlying Os services. Since assembly programming places full control of the
global state that is normally managed by the compiler back into the programmer’s hands,
ignoring the calling conventions (ABI specifications) in any function will break compatibility
with the rest of the OS (which is responsible for running your code) and require you to
manually analyze all of your global state (e.g. register usage) in every possible combination
of your call tree.

11

https://www.felixcloutier.com/x86/mul
https://www.felixcloutier.com/x86/div

5.1.1 Alignment

Alignment is to 16-bytes, and must be correct at call sites, not the beginning of the function.
Alignment ensures that each function starts with a known good stack offset, and thus must
be verified before each call. Since the stack starts every call offset by 8 (due to the return
address of the function being pushed to the stack), this means that ensuring that the rsp
offset at a call site is an odd multiple of 8, or rspoffset%16 = 8.
some_function:

pushq %rbp /* save the base pointer (callee-save reg) */
movq %rsp, %rbp /* build the stack frame in a ABI compatible way */
/* Allocate a large block of memory on the stack for some stuff */
subq $128, rsp
/* -128(rsp) - char [64] */
/* -64(%rsp) - int [8] */
/* note: at this point, the stack is not aligned as 128 % 16 = 0 */

/* bunch of assembly code */
pushq %rax /* save rax for some reason */
/* bunch of assembly code w/o stack adjustments */

/* at this point the stack offset is 136, which is ALIGNED, so we can safely
make the call without messing with alignment */

call foo
/* do other stuff including popping rax and restoring rbp */
/* ... */

Listing 6: Proper alignment at call sites

Aligning at the start of the function is acceptable if no intermediate stack operations are
done between the alignment and call (i.e. if you don’t want to think about alignment at
every call site):
some_function:

subq $8, %rsp /* now aligned */
/* bunch of assembly */
/* you must not adjust the stack pointer in any way here, i.e. you must

not use push; pop; [opcode] ..., %rsp */
call otherfun

Listing 7: Proper alignment in function prelude

But if you end up using a lot of registers at once, it is not always possible to only do stack
operations at the start of the function e.g. you may need to ”spill” (push) some registers
to the stack so you can temporarily use them for something else.

However, messing with the stack after it has been aligned without recalculating alignment
is always invalid:
some_function:

pushq %rbp /* save the base pointer */
movq %rsp, %rbp /* build the stack frame in a ABI compatible way */

12

/* Allocate a large block of memory on the stack for some stuff */
subq $120, rsp
/* -128(rsp) - char [64] */
/* -64(%rsp) - int [8] */
/* note: at this point, the stack is aligned as 120 % 16 = 8 */

/* bunch of assembly code */
pushq %rax /* save rax for some reason */
/* bunch of assembly code w/o stack adjustments */

/* at this point the stack offset is 128, which is not aligned, so we've
violated calling convention here. */

call foo

Listing 8: Incorrect alignment

Alignment is not something that is blindly solved by adding subq $8, %rsp to the beginning
of your functions; you must think about the actual stack offset at every call site!

Since the ABI specifications assume that the stack is aligned on entry to a function at the
start of every function, it is extremely important that every non-leaf function rigorously
follows the alignment requirements. However, while it is possible to ignore alignment re-
quirements in leaf functions that never make calls, we highly recommend that you take steps
to align the stack in those functions too, as you may choose to extend them to make calls
at a later time, which would then break the alignment requirements for all descendants of
that function.

5.1.2 Callee vs. Caller saved registers

Refer to table 1 for a summary of which registers are caller-saved and which registers are
callee-saved.

Note: The usage column is the conventional usage; all 16 registers above in x86 (with a
few exceptions) are general purpose registers and ca be used to store any value at any time
(barring %rsp). The value “yes” in the “Preserved across function calls” column implies a
callee-save register and “no” implies a caller-save register.

Recall that registers are shared global state; unlike higher-level languages there is no concept
of a ”local variable”, and every part of an assembly program shares the same registers as
every other part. To tame the mess, the Linux ABI has specified that concept of callee-
saved registers, where the called function saves the registers before modifying them, and
caller-saved registers, where the calling function saves the registers before making a call if
the values are still needed. This implies that:

1. The ”callee” and ”caller” are from the perspective of the currently executing function.
The caller is the function making the call (i.e. the current function), and the callee is
the function it is calling.

13

Register Usage Preserved across
function calls

%rax temporary register; for varargs functions passes the
number of vector registers used; return value register

No

%rbx callee-saved; optional base pointer Yes
%rcx 4th argument register in func call No
%rdx 3rd argument register in func call No
%rsp stack pointer Yes
%rbp frame pointer Yes
%rsi 2nd argument register in func call No
%rdi 1st argument register in func call No
%r8 5th argument register in func call No
%r9 6th argument register in func call No
%r10 temporary register No
%r11 temporary register No
%r12-%r15 callee-save registers Yes

Table 1: Register uses

2. This is only a convention, in order to enforce these semantics every single function
must adhere to these conventions.

3. If a function makes no calls, there is no reason to go through the extra complication
of using callee-saved registers unless you ran out of caller-save registers.

From the perspective of the current function, caller-saved registers may be used without
bothering to save their contents, while callee-saved registers must be saved before use, and
restored before the function returns. Likewise, after a call, the function that made the call
must assume that all caller-saved registers have had their contents annihilated.

Note: If you do not use a register, you don’t have to do anything to it. Don’t save it, or
copy it, or do anything to it ”just to be safe”. However, as soon as you start using a register
(i.e. write to its value), you must now start considering the register conventions for the
register.

Beware the implications of violating register conventions: the assembly program is being
driven by other code (even if main were in assembly, glibc and the kernel will still interact
with the code). Thus, violating any of these conventions can lead to very undefined be-
haviour as soon as control passes to a function out of your control, and you program may
mysteriously segfault, crash or silently error (e.g. crash on return from main, even though
everything else seems fine). Do not violate register conventions!

Important: It does not matter if you wrote the function and know it won’t touch certain
registers; for your own sanity, and the sanity of anyone who will ever read your code, you
must pretend like all caller-saved registers were overwritten with garbage after the control
flow is passed back to the calling function. 99/100 times we have seen students attempt
cute shortcuts like this, it has come back to bite them in major ways. If you want values to

14

live across function calls, put them in callee-saved registers (after you’ve properly dealt with
their current values). If you’re out of callee-saved registered then you must start installing
them on the stack, and dealing with the alignment issues that come with that, or allocating
true local variables. Whatever you do, don’t take the shortcut!.

5.1.3 Beware of clobbering the stack

Notice that rsp is a callee-saved register. rsp (and all its subregisters) is special because it’s
the stack pointer, and is implicitly used by push, pop, ret, call, among other instructions.
In particular, call will always push an 8-byte return pointer to the stack before passing
control to the function that was called, and ret will figure out where to return execution
to by popping the topmost 8-byte value off the stack and jumping to that address.

Notice the terrifying implication: if you fail to restore the stack pointer correctly before
hitting the ret keyword, you will jump to some random garbage address instead of returning
control to the calling function. This is a very very hard to debug, as even GDB will be
confused once this happens (you can generally tell this has happened in your program
immediately segfaults, prints ”Bus error”, or seems to jump into the middle of nowhere
after you pass the ret opcode).

5.1.4 RSP can be moved down further to create free real estate

some_function:
pushq %rbp
movq %rsp, %rbp
subq $108, %rsp /* now we've made 100 bytes of free real-estate (tm) to store

stuff like extra variables, arrays, and strings */
/* ... */
/* don't forget to restore it at the end of your function!
addq $108, %rsp
popq rbp
ret

Listing 9: Allocating extra space on the stack

You do have to keep track of how you split up this space though; we recommend leaving a
comment with the offset to each logical division of this space.

5.2 The operands for AT&T syntax are reversed

Most assembly resources found for x86_64 asm will give you intel syntax, which does not
have the AT&T opcode operand annotations (the $, % prefixes before the opcode args), does
not use with suffixes on the opcode (e.g. the l in ”subl), and which puts the destination
before the source e.g. opcode[dest], [src].

However, in this class, we use AT&T syntax which places the destination after the source
(e.g. opcode [src], [dest]), which does use width opcode suffixes, and does use opcode

15

operand annotation. Thus if you consult a standard x86_64 asm reference, remember to
reverse the operand order before using the instruction in your code!

5.2.1 Subtraction and compare have reversed operands

When you write subq %rax, %rbx, this actually does rbx← rbx− rax. More confusingly,
cmp %rax, %rbx
jl .someLabel

will actually jump to .someLabel if rbx < rax. This idiosyncrasy exists because of the src
to dest opcode operand order in AT&T assembly.

5.3 Beware the width suffixes when using memory references

Remember that all pointers on x86_64 are 8-bytes. Thus any registers passed to the memory
reference syntax offset(base, index, multiple) must be full-size registers, i.e. the ones
that begin with R. To distinguish how much data to pull from the memory reference, the
opcode suffix is used. For instance

movq (%rax), %rcx

copies eight bytes (a long) from the memory location at %rax, but
movb (%rax), %cl

copies a single byte to the smallest subregister of the %rcx register. This is the only instance
where you can have registers of different widths in your assembly opcodes, as the memory
reference register must always be the full-size register.

Likewise when loading memory references into a register for computation, always ensure
that they are loaded into full 8-byte registers, and that all operations are done using 8-byte
instructions when manipulating the address.

5.3.1 Use the ”width changing mov” to widen registers

Using a smaller subdivision of a larger register generally leaves the data in the upper portions
intact (with one very important exception). For instance operating on the %al register will
leave the upper 7-bytes of the %rax register at its previous value. This is a frequent source
of bugs for the unsuspecting student.

To safely widen a register (zero extend), you can either zero the full register first and then
copy the smaller value in, e.g.

xorl %eax, %eax
movb %cl, %al

16

or you can use movz[a][b], where [a] is a width suffix (one of b, w, l, q, for 1,2,4,8 bytes
respectively), and [b] is a wider width suffix. For example movzbq will copy an 1-byte
register to a 8-byte register, e.g. movzbq %al, %rcx. The registers used must match in
width to each part.

To copy with sign extension (e.g. widening a signed number), use movs[a][b], with [1] and
[b] being the same as above.

Note that movzlq does not exist). This is because doing a mov into a 4-byte register
always clears the upper 4 bytes. However, movslq exists to sign-extend from 4-bytes
to 8-bytes. Note that writes to any other subregister width (i.e. the 2-byte and 1-byte
subregisters) retains values in the unwritten part of the full register.

5.4 Assembly code executes linearly in the absence of control flow

Often, students assume that assembly works like C, and that local labels work like magical
”teleportation” markers that change control flow by simply existing. This is not the case!
some_function:

/* bunch of assembly code */
/* now we try write an if else */
cmp $some_number, $rax
jlt .LifTrue /* if rax < some_number, do something */

.LifTrue:
/* some true stuff */

.LifFalse:
/* some false stuff */
jmp .LendIf

.LendIf:
/* rest of function */

Listing 10: Incorrect assembly control-flow assumptions

Can you spot the bug(s) and redundancy in this code?

Answer:

1. Without a control flow instruction after .LifTrue instructions, execution will continue
right through the .LifFalse label, effectively running the else brach immediately after
the if branch, instead of creating an if/else construct.

2. Likewise, consider what happens when rax ≥ some_number. There’s no jump after
the conditional jump, so it will also continue at the .LifTrue label without skipping
to the .LifFalse label like we wanted it to.

3. The unconditional jump after the .LifFalse block is redundant, as execution flow
would naturally continue at the .LendIf block in absence of the jump.

A naive rewrite to be functionally correct:

17

some_function:
/* bunch of assembly code */
/* now we try write an if else */
cmp $some_number, $rax
jlt .LifTrue /* if rax < some_number, do something */
jmp .LifFalse

.LifTrue:
/* some true stuff */
jmp .LendIf

.LifFalse:
/* some false stuff */
jmp .LendIf

.LendIf:
/* rest of function */

Listing 11: Correct control flow

However, if we analyze the structure of the code, further redundancies become apparent:
some_function:

/* bunch of assembly code */
/* now we try write an if else */
cmp $some_number, $rax
jge .LifFalse /* Invert the conditional to get rid of one jump */

.LifTrue:
/* some true stuff */
jmp .LendIf

.LifFalse:
/* some false stuff */
/* remove the redundant jump here */

.LendIf:
/* rest of function */

Listing 12: Optimized if-else equivalent

And that’s probably the best this if construction will get.

This also means that forgetting the ret instruction in any branch of a function will prob-
ably lead to very confusing behaviour, as the CPU will happily execute the next assembly
instruction in the file, which is probably from a different branch, or even from a different
function!

5.5 Write useful comments

Write semantic comments. Write comments as you write each line of assembly. Yes, we’ve
all done the thing where we write all the comments after the assignment is complete to get
the style points. Don’t do that for assembly. Instead, each time you write a line of assembly,
you should tell yourself that you are not done until you’ve written the inline comment for
the line. Trust us on this one.

Here is an example of bad comments (syntactic comments):

18

some_function:
xorl %ecx, %ecx /* 0 rcx */
xorl %edx, %edx /* 0 rdx */
jmpq .L1 /* jump to .L1 */

.L2:
addq $5 %rdx /* add 5 to rdx */
incq %rcx /* increment rcx */

.L1:
cmpq %rcx, %rdi
jb .L2 /* jump if rax is unsigned less than rdi */

Listing 13: Bad: syntactic comments

You probably still have no idea what the snippet above is actually trying to do even with
the comments right?

The problem with the comments in the snippet above is that they are patently obvious.
They describe the syntax of the assembly language, not the actual intention of the logic.
They are useless, as we could get that same information by reading the source.

Here is an example of assembly comments that are actually useful:
/*
* function args:
* - rdi -> iterations_to_sum
*/
some_function:

xorl %ecx, %ecx /* zero the loop counter (unsigned i) */
xorl %edx, %edx /* sum starts at zero */
jmpq .LwhenCond /* check sum loop condition */

.whileTop:
addq $5 %rdx /* sum += 5 */
incq %rcx /* increment i by 1 */

.LwhileCond:
cmpq %rcx, %rdi
jb .L2 /* loop while loop counter i is less than iteration_to_sum */

Listing 14: Good: semantic comments

By commenting the semantic meaning of each line, we are instantly able to figure out the
purpose of this function, which will help us debug any issues that crop up. (and yes, this is
also applicable to comments written for higher-level languages!)

Don’t be lazy with your comments, you will always pay later!

5.6 Debug using GDB

Yes, I understand that the vast majority have removed GDB from your memory as a trau-
matic memory from intermediate, and are now deathly allergic to its very mention. We are
here to try dispel that notion. Firstly, putting something through GDB is much faster than
guessing where to stick print statements and remembering to recompile 99% of the time.

19

Secondly, trying to add a print statement in assembly is seriously non-trivial. Thirdly, we’ve
seen the vast majority of you try debugging using the poke-and-check method, praying that
tiny changes will magically work, and we are here to tell you that programming by coinci-
dence is unacceptable. Finally, there are few things more instructive than stepping through
your problematic logic exactly how the computer runs it. Use the debugger!

Firstly, use layout reg (type that into the GDB terminal and hit enter) when working on
assembly. You can use fs next to set the focus to the next ”window” so you can scroll
it, and refresh to force all the windows to be redrawn if the printout breaks in any ways.
(layout src is the same, without the register view, and is quite nice for debugging normal
C and C++ source).

Secondly, here’s a refresher of all the essential features of GDB you probably forgot:

1. b [filename]:[linenum] to set a breakpoint at the given line in the given file. you
can omit the filename if you want a breakpoint in the current file, and you can use
other identifiers that GDB recognizes, e.g. b [funtion_name]. Remember that you
can set multiple breakpoint, so don’t just set a break point on the first line of main
and start stepping, that takes YEARS.

2. c to continue. This will run your code until it hits the next breakpoint. Remember
that once the code has broken on a breakpoint, you can proceed to set some more
breakpoints, and remove existing ones. Use this to skip your thousand iteration loops
instead of trying to step through each iteration.

3. i b to list all breakpoints.

4. dis [breakpoint #] to temporary disable a breakpoint. Use ena [breakpoint #]
to re-enable it.

5. del [breakpoint #] permanently removes a breakpoint.

6. n steps over a line, does not enter function calls, s steps into a line, does enter function
calls, fin runs until the end of the function, useful if you want to get out of a function
immediately.

7. r [optargs] starts the program being debugged, [optargs] denotes a optional list
of arguments normally passed to the program on the command line. If your program
takes input from stdin you pipe in from a file, you can use the file redirection form
r [opt args] < file to dump the file into the program’s stdin, without dump the
input into GDB. Note that if you blow past the area of interest in GDB, just re-run
your r command; it will restart the debug session with all your breakpoints intact.
Don’t exit GDB!

8. p [expression], prints the value of any C expression. Yes this can include function
calls, array access, almost anything you can do in C can be printed. If the print
output is not in the right format, cast the expression to the correct type. Use p/x
[expression] to print a numeric expression in hexadecimal format, p [expression]
@ [number] to print a given number of elements from an array.

20

9. disp [expression] prints the value of expression every time GDB stops.

10. watch [expression] will automatically break execution when the expression changes.
E.g. watch varname will break into interactive debugging mode every time varname
is modified in any way by any code currently in scope. This is very powerful and can
literally save hours of debugging.

11. bt prints the backtrace of the current location, which is the list of every nested
function call that got you to the current line. f [# from the bt command] moves
the debugging context to the given function call, allowing you to print variable values
from functions above the current point int he call tree. Very handy to see how bad
values got into segfaults for instance.

12. b [break expression] if [expression] sets a conditional breakpoint that is only
activated when the expression evaluates to be true. expression can be pretty much
any C expression. Want to break on line 105 when the loop counter i is true and the
variable char_val is 53? Well just type b 105 if i == true && char_val == 53.
Note that these are slower than normal breakpoints as they can’t use the special CPU
breakpoint hardware, but it’s quite often worth the wait.

Note that GDB seems to have pretty good hot reload support. If you make changes to the
source files, just run make in another terminal, and GDB should use the new executable
when you use the r command again, allowing you to keep all of your current breakpoints.

To print register values, you must replace the % prefix with $, e.g. %rax can be printed
using p $rax.

The @ operator may not always work correctly for printing arrays. If it is not behaving, try
the x command, documented here.

5.7 Optional: Use ABI compliant stack frames for sensible backtraces

This is not a hard-recommendation, but it is recommended if you want to have sensible
backtraces in GDB and valgrind instead of a stack of question marks.

A ABI compliant stack frame looks like the following:

This allows GDB (and valgrind) to trace the backtrace by following rbp to to correct part
of the stack, retrieving the return address, and using the known old rbp value to find the
next stack frame recursively like a linked list. To build a compliant stack frame, use the
following function prelude:
some_function:

/* call pushes the return address, so that takes care of the topmost
element of the ABI stack frame */
pushq %rbp
movq %rsp, %rbp
/* now adjust the stack to create local var space */
subq $100, %rsp /* 100 bytes allocated for example, can be any number */

21

https://visualGDB.com/gdbreference/commands/x

Position Contents Frame
8n+16(%rbp) 8-byte stack passed argument n

Previous...
16(%rbp) 8-byte stack passed argument 0
8(%rbp) return address

Current

0(%rbp) previous %rbp value
-8(%rbp) unspecified

...
0(%rsp) (local var space)

-128(%rsp) end of red zone (safe for vars)

Table 2: ABI-compliant stack frame organization

/* ... but then you must index using negative indexes from rbp */
/* e.g. -100(%rbp) is now the start of the stack allocated region) */
/* push caller saved registers here so you don't have to mess with them

in the offset calculations for local variables */
push %r13
/* ... */
/* body of function goes here */

Listing 15: ABI-compliant stack frame construction

If you build the stack frame in this manner, remember that the stack grows downwards (i.e.
towards 0), but arrays are indexed upwards (i.e. towards infinity). Thus when calculating
offsets, you must calculate the offset to the start of the array (i.e. the smaller end) not the
larger end. Reversing this will lead to some very mysterious bugs.

The following technique for creating stack frames is not ABI compliant. It also works, but
will lead to meaningless backtraces:
some_function:

/* call pushes the return address, so that takes care of the topmost
element of the ABI stack frame */
pushq %rbp
/* push caller saved registers here */
pushq %r13
/* ... */
/* now adjust the stack to create local var space */
subq $100, %rsp
movq %rsp, %rbp
/* now you can calculate positive indexes, e.g. 0(%rbp) is the start of the

allocated space, but backtraces will not function properly. */

Listing 16: Non-compliant stack frame construction

Meaningful backtraces are very nice, as they allow you to figure out how you got to a given
point in your code. However, if it is too hard for you to visualize the stack using negative
offsets, then the above way is acceptable, just remember that you should disregard your
backtraces as the value of %rbp will confuse GDB and valgrind.

22

6 Pitfalls

6.1 Don’t map C variables to registers 1:1

...because if you do that, you’ll waste a bunch of registers and run of of them really quickly.

For example: how many registers does the following expression take to implement (without
cute things like using the stack) (1 + 2− 3) ∗ (4 + 5 + 7)?

Answer: 2. See below:
movq $7, %rax
addq $5, %rax
addq $4, %rax
movq $1, %rcx
addq $2, %rcx
subq $3, %rcx
imulq %rax, $rcx /* result in rcx */

Listing 17: An assembly implementation of (1 + 2− 3) ∗ (4 + 5 + 7)

likewise, registers should can be reused as soon as the value their modeling becomes dead
(i.e. is not used anymore in a function). Considering the following chunk of C code:
int summate(int *arr, size_t len) {

long i = len ;
long acc = 0;
while (i >= 0) {

acc += arr[i];
--i

}
/* after this point i is not used anymore, so we can stick a different
variable in its

register now */
long some_math = (len + 3) * 2
do_some_other_stuff_with_arr(arr, len, some_math)
return acc;

}

Listing 18: C example for register allocation

and a possible assembly implementation of the above:
/*
* rdi - int* arr
* rsi - size_t len
*/
.globl summate
summate:

pushq %rbx /* save the accumulator before use into callee-saved register
(need to persist across call) */

movq %rsi, %rcx /* initialize loop counter */
xorl %ebx, %ebx /* zero accumulator */

23

jmp .LwhileCond
.LwhileTop:

addq (%rdi, %rcx, 4), %rbx /* acc += arr[i] */
decq %rcx /* decrement rcx (also sets all flag but CF */

.LwhileCond:
cmp $0, %rcx
jge .LwhileTop /* loop while i >= 0 */

/* now calculate len + 3 / 2 without overwriting rsi */
movq %rsi, %rcx /* reuse rcx now that we don't need i anymore */
addq $3, %rcx
imulq $2, %rcx

/* function args passing reg have not been overwritten, so arr->rdi, len->rsi,
and we put some_math->rcx by design and the initial push aligned the stack
so we are now ready to call the function */

callq do_some_other_stuff_with_arr

/* at this point, must assume that ALL caller-saved registers are clobbered */
/* ...but rbx is callee saved, so we can assume it's still intact */
movq %rbx, %rax /* return the accumulator */
popq %rbx /* restore callee saved register */
ret

Listing 19: Possible assembly implementation of the above example

24

7 Listing and table indexes

Listings
1 Accessing memory references . 6
2 Using multiple memory references correctly 6
3 leaq instruction example . 6
4 .S file section layout . 8
5 Labels and immediates . 8
6 Proper alignment at call sites . 12
7 Proper alignment in function prelude . 12
8 Incorrect alignment . 12
9 Allocating extra space on the stack . 15
10 Incorrect assembly control-flow assumptions 17
11 Correct control flow . 18
12 Optimized if-else equivalent . 18
13 Bad: syntactic comments . 19
14 Good: semantic comments . 19
15 ABI-compliant stack frame construction . 21
16 Non-compliant stack frame construction . 22
17 An assembly implementation of (1 + 2− 3) ∗ (4 + 5 + 7) 23
18 C example for register allocation . 23
19 Possible assembly implementation of the above example 23

List of Tables

1 Register uses . 14

2 ABI-compliant stack frame organization . 22

25

	Notice
	Introduction
	Basics
	Conventions used in this text
	Terminology

	Mechanics
	Reference resources
	Memory references
	Assembler directives
	Sections
	Immediates, labels, and registers
	Signed/unsigned numbers
	Argument passing
	Odd instructions

	Best Practices
	Follow the calling conventions
	Alignment
	Callee vs. Caller saved registers
	Beware of clobbering the stack
	RSP can be moved down further to create free real estate

	The operands for AT&T syntax are reversed
	Subtraction and compare have reversed operands

	Beware the width suffixes when using memory references
	Use the "width changing mov" to widen registers

	Assembly code executes linearly in the absence of control flow
	Write useful comments
	Debug using GDB
	Optional: Use ABI compliant stack frames for sensible backtraces

	Pitfalls
	Don't map C variables to registers 1:1

	Listing and table indexes

