Feedback and Flip-Flops

Philipp Koehn
7 September 2019

The Story So Far

- We can encode numbers
- We can do calculation
- ... but it's all a bit staticl
- How about a counter?
\rightarrow this requires "memory"

feedback

A Strange Contraption

Let's Turn It On

Electricity is on \rightarrow this opens the normally closed key

Let's Turn It On

Electricity is off \rightarrow this closes the normally closed key

What Do We Have?

- A Buzzer
- A Clock

- An Oscillator

(symbol)

Oscillator

- Period of oscillator
- Frequency: cycles per second
- Unit: 1 cycle per second: 1 Hertz
- Modern computes:

Billions of Hertz = Gigahertz (GHz)

Heinrich Hertz 1857--1894

flip flop

Another Contraption

Closing Upper Key

Opening Upper Key

Same key configuration as initially
But: Now OUT is on --- we remembered the key turn

Closing Lower Key

Opening Lower Key

Back to initial state

Memory

- We have memory -- called Reset-Set Flip-Flop
- Truth table

UPPER	LOWER	OUT
0	0	OUT
0	1	0
1	0	1
1	1	Illegal

- UPPER = SET
- LOWER = RESET

Re-Arranged

Symmetric

Truth Table

S	R	Q	$\overline{\mathrm{Q}}$
1	0	1	0
0	1	0	1
0	0	Q	$\overline{\mathrm{Q}}$
1	1	Illegal	

d-type flip flop

Vision

- Control bit ("clock")
- on = write to memory
- off = read from memory
- Data bit
- data item to be written
- Output
- current state of the memory

Replace Set/Reset with Data

Add Control Bit ("Clock")

D-Type Flip-Flop

- Also called D-type latch
- Circuit latches on one bit of memory and keeps it around
- Truth table

Data	Clock	Q	$\overline{\mathrm{Q}}$
0	1	0	1
1	1	1	0
X	0	Q	$\overline{\mathrm{Q}}$

- Can also build these for multiple data bits

accumulative adder

Design Goal

- Adder has initially value 0
- Adding a number
\rightarrow value increases
- Resetting
\rightarrow value goes back to 0

Ingredients

Ingredients

Building an Accumulative Adder

- Latch: current sum
- Clock on \rightarrow set it to 0

Building an Accumulative Adder

- Adder
- Combines
- current value
- selected input

Building an Accumulative Adder

- Can we pass output directly to latch?
- Concerns
- select between 0 and sum
- only stored when clock on

Building an Accumulative Adder

Building an Accumulative Adder

- Two Latches
- one to store the sum
- one to store input to adder
- Clock 1
- carry out addition
- store result
- Clock 2
- transfer to set up next addition

Building an Accumulative Adder

- Combine the clocks
- Pressing the add key
- carry out addition
- store result in upper latch
- Release the add key
- transfer to lower latch
- set up next addition

What Else?

- Remember the oscillator?

What Else?

What Else?

edge triggered flip-flop

D-Type Latch

- When clock is on, save data
- "Level-triggered"

D-Type Latch

- "Edge-triggered": changes value, when switched from © to 1

Edge Triggered D-Type Latch

Symbol

Truth Table

Data	Clock	Q	$\overline{\mathrm{Q}}$
0	\uparrow	0	1
1	\uparrow	1	0
X	0	Q	$\overline{\mathrm{Q}}$

ripple counter

Oscillator and Latch

Data	Clock	Q	$\overline{\mathrm{Q}}$
1	0	0	1
1	\uparrow	1	0
0	1	1	0
0	0	1	0
0	\uparrow	0	1
1	1	0	1
1	0	0	1

Oscillator and Latch

Data	Clock	Q	$\overline{\mathrm{Q}}$
1	0	0	1
1	\uparrow	1	0
0	1	1	0
0	0	1	0
0	\uparrow	0	1
1	1	0	1
1	0	0	1

Halving of Frequency

Data	Clock	Q	$\overline{\mathrm{Q}}$
1	0	0	1
1	\uparrow	1	0
0	1	1	0
0	0	1	0
0	\uparrow	0	1
1	1	0	1
1	0	0	1

Multiple Bits

Ripple Counter

$$
\begin{aligned}
& \text { OUT1 } \begin{array}{lllllllllll|ll|l|ll|}
\hline 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1
\end{array} \\
& \text { OUT2 } \begin{array}{|llllllllllll|llll|}
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array} \\
& \text { OUT3 } \begin{array}{llllllll|llllllll|}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array} \\
& \begin{array}{llllllllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15
\end{array}
\end{aligned}
$$

