Memory

Philipp Koehn

9 September 2019

Slightly Modified

Operations

- Circuit latches on one bit of memory and keeps it around
- Truth table

Data-In	Write	Data-Out				
0	1	0				
1	1	1				
X	0	Data				

• Can write 1 bit and read content

multi-bit storage

8 Bit Memory

- 8 Bit Latch contains 8 bits
- Now: only read 1 bit at a time
- Select the bit with an address
- Input: address
- Output: bit value

• Truth table

A	ddres	Output			
A2	A 1	A0	OUT		
0	0	0	D ₀		
0	0	1	D_1		
0	1	0	D_2		
0	1	1	D_3		
1	0	0	D_4		
1	0	1	D_5		
1	1	0	D_6		
1	1	1	D ₇		

• What Boolean operation returns the correct value for address 000? (NOT A2) AND (NOT A1) AND (NOT A0) AND D0

• Full Boolean formula

((NOT	A2)	AND	(NOT	A1)	AND	(NOT	A0)	AND	D0)	OR
((NOT	A2)	AND	(NOT	A1)	AND		A0	AND	D1)	OR
((NOT	A2)	AND		A1	AND	(NOT	A0)	AND	D2)	OR
((NOT	A2)	AND		A1	AND		A0	AND	D3)	OR
(A2	AND	(NOT	A1)	AND	(NOT	A0)	AND	D4)	OR
(A2	AND	(NOT	A1)	AND		A0	AND	D5)	OR
(A2	AND		A1	AND	(NOT	A0)	AND	D6)	OR
(A2	AND		A1	AND		A0	AND	D7)	

- 8 Bit Latch allows 8 bits to be written at the same time
- Now: only write 1 bit at a time
- Select the bit with an address
- Input
 - address
 - write flag
 - data bit

• Truth table

Ac	ddres	SS	Output							
A2	A1	A0	W7	W6	W5	W4	W3	W2	W1	W0
0	0	0	0	0	0	0	0	0	0	WRITE
0	0	1	0	0	0	0	0	0	WRITE	0
0	1	0	0	0	0	0	0	WRITE	0	0
0	1	1	0	0	0	0	WRITE	0	0	0
1	0	0	0	0	0	WRITE	0	0	0	0
1	0	1	0	0	WRITE	0	0	0	0	0
1	1	0	0	WRITE	0	0	0	0	0	0
1	1	1	WRITE	0	0	0	0	0	0	0

• What Boolean operation returns the correct value for output W0? (NOT A2) AND (NOT A1) AND (NOT A0) AND WRITE

8 Bit RAM

8 Bit RAM

- 8 Bit Random Access Memory (RAM)
- Input
 - address
 - write flag
 - data bit
- Output
 - data bit

8x2 Bit RAM

- 8x1 bit RAM allows read/write of 1 bit at a time
- What if we want to read/write 2 bits at a time? (and ultimately 8 bits (1 byte) and more)
- \Rightarrow Arrange them together

8x2 Bit RAM

8x2 Bit RAM

- 64KB = 65,536 bytes
- 16 bit address space $(2^{16} = 65536)$
- Common memory size in the 1980s: we will use it with 6502 assembly

Control Panel

Memories

Early 1980s: 64 KB RAM, 16 bit address space

Bigger Memories

- Early 1980s: 16 bit address space, up to 64 KB
- 1990s: 32-bit address space, up to 4 GB
- Today: 64-bit address space, up to 16 EB (exa-byte)
- Actually supported by Intel/AMD 64-bit processors
 - 52 bits for physical memory: 4 peta-byte
 - 48 bits for virtual memory: 256 tera-byte
- Actually existing RAM: my lab biggest RAM machine: 768 GB (doubles every \sim 2 years)