
6502 Introduction

Philipp Koehn

28 February 2018

Philipp Koehn Computer Systems Fundamentals: 6502 Introduction 28 February 2018

1

some history

Philipp Koehn Computer Systems Fundamentals: 6502 Introduction 28 February 2018

21971

• First microprocessor on an integrated circuit: Intel 4004

• 4-bit central processing unit, 12 bit address space (4KB)

Philipp Koehn Computer Systems Fundamentals: 6502 Introduction 28 February 2018

31975

• MOS Technology 6502

• Dominant CPU in home computers for a decade
(Atari, Apple II, Nintendo Entertainment System, Commodore PET)

Philipp Koehn Computer Systems Fundamentals: 6502 Introduction 28 February 2018

41977

• Atari 2600

• Video game console: Pong, Pac Man, ... connected to TV

Philipp Koehn Computer Systems Fundamentals: 6502 Introduction 28 February 2018

51980

• Commodore VIC20

• 1 MHz, 5KB RAM, BASIC, 3.5KB RAM, 176x184 3 bit color video

Philipp Koehn Computer Systems Fundamentals: 6502 Introduction 28 February 2018

61982

• Commodore C64

• 64KB RAM, 320x200 4 bit color video

Philipp Koehn Computer Systems Fundamentals: 6502 Introduction 28 February 2018

7Commodore C64

• BASIC programming language, but serious programs written in assembly
• No fancy stuff like multi-process, user accounts, virtual memory, etc.
• Machine itself had no mass storage - had to buy tape drive, then floppy
disk drive, machine was obsolete once hard drives came around

Philipp Koehn Computer Systems Fundamentals: 6502 Introduction 28 February 2018

8BASIC Demo

• Commands get executed (just like Python interpreter)
PRINT "HELLO WORLD"

HELLO WORLD

• Program with line numbers
10 PRINT "HELLO WORLD"

20 GOTO 10

• List program
LIST

• Execute program
RUN

• Another example (takes about 1 second to run)
20 FOR I = 1 TO 1000

30 NEXT

Philipp Koehn Computer Systems Fundamentals: 6502 Introduction 28 February 2018

9

6502 specification

Philipp Koehn Computer Systems Fundamentals: 6502 Introduction 28 February 2018

106502 Specification

• 8-bit processor, using 16 bit address space (up to 64KB RAM)

• 3 registers: accumulator, X register, Y register

• Status register: contains flags

• Operating system in ROM (read only memory)

• Stack -- more on that later

• Interrupts -- more on that later

Philipp Koehn Computer Systems Fundamentals: 6502 Introduction 28 February 2018

11Assembly Code Instructions

• Load and store from A, X, and Y register
• Transfer between registers
• Arithmetric: add, subtract, increment, decrement

• Shift and rotate, e.g., 00001111 → 00011110

• Logic: AND and OR

• Compare and test
• Branch (conditional jump)
• Set and clear flag values
• Jump and subroutines
• Interrupt: cause interrupt, return from interrupt

• Stack operations

Philipp Koehn Computer Systems Fundamentals: 6502 Introduction 28 February 2018

12Memory Organization

0000-00ff Zero page: used for variables

0100-01ff Stack

0200-03ff More variables [C64]

0400-07ff Screen memory (characters) [C64]

0800-9fff BASIC RAM [C64]

a000-bfff BASIC ROM [C64]

c000-cffff Upper RAM Area [C64]

d000-dfff Character shape ROM / Video and audio RAM [C64]

e000-ffff Kernel ROM [C64]

Can switch to RAM under ROM

Philipp Koehn Computer Systems Fundamentals: 6502 Introduction 28 February 2018

13Load and Store

• 3 Registers: Accumulator, X, Y

• Load from memory: LDA, LDX, LDY

• Store to memory: STA, STX, STY

Philipp Koehn Computer Systems Fundamentals: 6502 Introduction 28 February 2018

14Addressing Modes

• Immediate: load specified value

LDA #$22 → accumulator has now value $22 (hex)

14Addressing Modes

• Immediate: load specified value

LDA #$22 → accumulator has now value $22 (hex)

• Absolute: load value from specified address

LDA $D010 → accumulator has now value store in memory position $D010

14Addressing Modes

• Immediate: load specified value

LDA #$22 → accumulator has now value $22 (hex)

• Absolute: load value from specified address

LDA $D010 → accumulator has now value store in memory position $D010

• Zero page: as above, but for memory addresses 0000-00FF

LDA $6A → accumulator has now value store in memory position $006A

14Addressing Modes

• Immediate: load specified value

LDA #$22 → accumulator has now value $22 (hex)

• Absolute: load value from specified address

LDA $D010 → accumulator has now value store in memory position $D010

• Zero page: as above, but for memory addresses 0000-00FF

LDA $6A → accumulator has now value store in memory position $006A

• Relative: relative to current program counter

BCC $06 → jump 6 memory positions forward, if carry flag clear

Philipp Koehn Computer Systems Fundamentals: 6502 Introduction 28 February 2018

15Indexed Addressing Modes

• X and Y registers can be used as indexes for memory lookup

15Indexed Addressing Modes

• X and Y registers can be used as indexes for memory lookup

• Indexed with X register
– example: LDA $0400,X

– add value of register X to $0400 (say, X=$05 → $0405)

– load value from that memory position ($0405)

15Indexed Addressing Modes

• X and Y registers can be used as indexes for memory lookup

• Indexed with X register
– example: LDA $0400,X

– add value of register X to $0400 (say, X=$05 → $0405)

– load value from that memory position ($0405)

• Variants: Y register, zero page

15Indexed Addressing Modes

• X and Y registers can be used as indexes for memory lookup

• Indexed with X register
– example: LDA $0400,X

– add value of register X to $0400 (say, X=$05 → $0405)

– load value from that memory position ($0405)

• Variants: Y register, zero page

• Zero Page Indexed Indirect
– example: LDA ($15,X)

– add value of register X to $15 (say, X=$02 → $0017)

– treat resulting memory position as pointer
(say, $0017 contains $E0, $0018 contains $FF)

– load value from that address ($FFE0)

Philipp Koehn Computer Systems Fundamentals: 6502 Introduction 28 February 2018

16Transfer Between Registers

• 3 Registers: Accumulator, X, Y

• Transfer from Accumulator: TAX, TAY

• Transfer to Accumulator: TXA, TXY

• Note: no TXY, TYX

Philipp Koehn Computer Systems Fundamentals: 6502 Introduction 28 February 2018

17Arithmetic

• Addition (to accumulator): ADC

– ADC #$02 → add 2 to accumulator

– ADC $4050 → add value in memory at address $4050 to accumulator

• Subtraction (from accumulator): SBC

• Increment by 1: INC, INX, INY

• Decrement by 1: DEC, DEX, DEY

• Sets carry, overflow, zero flag

Philipp Koehn Computer Systems Fundamentals: 6502 Introduction 28 February 2018

18Flags

• Carry: set iff

– addition/increase results in value >255
– subtraction/decrease results in value <0

18Flags

• Carry: set iff

– addition/increase results in value >255
– subtraction/decrease results in value <0

• Overflow (V): same under assumption that numbers are signed

18Flags

• Carry: set iff

– addition/increase results in value >255
– subtraction/decrease results in value <0

• Overflow (V): same under assumption that numbers are signed

• Zero: set iff result of operation/load/transfer is 0

18Flags

• Carry: set iff

– addition/increase results in value >255
– subtraction/decrease results in value <0

• Overflow (V): same under assumption that numbers are signed

• Zero: set iff result of operation/load/transfer is 0

• Negative: set iff result of operation/load/transfer sets bit 7

18Flags

• Carry: set iff

– addition/increase results in value >255
– subtraction/decrease results in value <0

• Overflow (V): same under assumption that numbers are signed

• Zero: set iff result of operation/load/transfer is 0

• Negative: set iff result of operation/load/transfer sets bit 7

• Other flags: Break, Interrupt, Decimal (more on these later)

18Flags

• Carry: set iff

– addition/increase results in value >255
– subtraction/decrease results in value <0

• Overflow (V): same under assumption that numbers are signed

• Zero: set iff result of operation/load/transfer is 0

• Negative: set iff result of operation/load/transfer sets bit 7

• Other flags: Break, Interrupt, Decimal (more on these later)

• Clear flags: CLC, CLV, CLI, CLD

• Set flags: SEC, SED, SEI

Philipp Koehn Computer Systems Fundamentals: 6502 Introduction 28 February 2018

19Example Program

Address Bytes Command
4000 65 1C (data: number 1)

4002 A0 9E (data: number 2)

4004 00 00 (data: sum)

4006 AD 00 40 LDA 4000

4009 18 CLC

400A 6D 02 40 ADC 4002

400D 8D 04 40 STA 4004

4010 AD 01 40 LDA 4001

4013 6D 03 40 ADC 4003

4016 8D 05 40 STA 4005

4019 00 BRK

19Example Program

Address Bytes Command
4000 65 1C (data: number 1)

4002 A0 9E (data: number 2)

4004 00 00 (data: sum)

4006 AD 00 40 LDA 4000

4009 18 CLC

400A 6D 02 40 ADC 4002

400D 8D 04 40 STA 4004

4010 AD 01 40 LDA 4001

4013 6D 03 40 ADC 4003

4016 8D 05 40 STA 4005

4019 00 BRK

16 bit addition

Philipp Koehn Computer Systems Fundamentals: 6502 Introduction 28 February 2018

20Branch

• Simple jump: JMP

• Flags can be used for conditional jump ("branch")

BCC Branch if carry flag clear

BCS Branch if carry flag set

BEQ Branch if zero flag set

BMI Branch if negative flag set

BNE Branch if zero flag clear

BPL Branch if negative flag clear

BVC Branch if overflow flag clear

BVS Branch if overflow flag set

Philipp Koehn Computer Systems Fundamentals: 6502 Introduction 28 February 2018

21Shift and Rotate

• Rotate bits by one position
– ROL: Rotate left, i.e., 11110000 → 11100001

– ROR: Rotate right, i.e., 11110000 → 01111000

21Shift and Rotate

• Rotate bits by one position
– ROL: Rotate left, i.e., 11110000 → 11100001

– ROR: Rotate right, i.e., 11110000 → 01111000

• ASL (Arithmetric Shift Left) /
LSR (Logical Shift Right) use carry bit

– ASL: 11110000 (C=0) → 1110000 (C=1)

– LSR: 11110000 (C=1) → 11111000 (C=0)

Philipp Koehn Computer Systems Fundamentals: 6502 Introduction 28 February 2018

22Example: Multiplication

• Elementary school multiplication:

xxxx10101 x 1101

22Example: Multiplication

• Elementary school multiplication:

xxxx10101 x 1101

10101

22Example: Multiplication

• Elementary school multiplication:

xxxx10101 x 1101

10101

0

22Example: Multiplication

• Elementary school multiplication:

xxxx10101 x 1101

10101

0

10101

22Example: Multiplication

• Elementary school multiplication:

xxxx10101 x 1101

10101

0

10101

10101

22Example: Multiplication

• Elementary school multiplication:

xxxx10101 x 1101

10101

0

10101

10101

100010001

(in decimal: 23x13 = 299)

22Example: Multiplication

• Elementary school multiplication:

xxxx10101 x 1101

10101

0

10101

10101

100010001

(in decimal: 23x13 = 299)

• Idea
– shift second operand to right (get last bit)
– if carry: add first operand to sum

– rotate first operand to left (multiply with binary 10)

Philipp Koehn Computer Systems Fundamentals: 6502 Introduction 28 February 2018

23Code

Address Bytes Command
4100 03 (data: number 1)

4101 06 (data: number 2)

4102 00 (data: product)

4103 A9 00 LDA #00

4105 A2 08 LDX #08

4107 4E 01 41 LSR 4101

410A 90 00 41 BCC 4110

410C 18 CLC

410D 6D 00 41 ADC 4100

4110 2E 00 41 ROL 4100

4113 CA DEX

4114 D0 07 41 BNE 4107

4116 8D 02 41 STA 4102

4119 00 BRK

Philipp Koehn Computer Systems Fundamentals: 6502 Introduction 28 February 2018

