HW% ’A(M %m.‘ﬁ\AF
M:klow = F7 1D/

Philipp Koehn _
presented by Chang Hwan Choi K R(’..\/\ew/ ™ \A}@A (5/2
¥ M'()\'kfwx Lolb

Fast Arithmetic

ALarelr—2648-)
Som " LSO L ytvie
L1 Sepk ol] qunts o
Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

arithmetic

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

Addition (Immediate) 2

e Load 1immediately one number (s® = 2)

1i $s0, 2

o Add 4 ($s1 = $sO® + 4 = 6)

addi $s1, $s0, 4

e Subtract 3 ($s2 = $s1 - 3 = 3)

addi $s2, $s1, -3

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

Addition (Register) :

e Load 1immediately one number (s® = 2)

1i $s0, 2

e Add value from $s5 ($s1 = $sO® + $s5)

add $s1, $s0O, $s5

e Subtract value from $s6 ($s2 = $s1 - $s6)

sub $s2, $s1, $s6

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

Overflow 4

e Signed integers operations: add, addi, and sub

— overflow triggers exceptions
p—

— similar to in;errugt

— register $mfcO® contains address of exception program

e Unsigned integers operations: addu, addiu, and subu

— no overflow handling (as in C programming language)

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic _ 14 March 2018

Code for Detecting Overflow 5

Se cu\rfLY |

e Overflow for unsigned integers operations can be detected from result

Mmg,‘jwd A,[O,Sum')
e Actual detection code 1s a bit intricate
gcmﬁ(“%v« d?ou‘ll
e If you are interested éxﬁw %:5))

— consult Section 3.2 in Patterson/Hennessy textbook

Sum = 0\+L>‘J

E(sum < 0\\{

/) DVQF‘QMJ

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

fast addition

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

Recall: N-Bit Addition 7

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

Recall: N-Bit Addition 8

1+1 = 0, carry the 1

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

Recall: N-Bit Addition 9

1+1+1 = 1, carry the 1

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

Recall: N-Bit Addition "

copy carry bit

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

e We defined n-bit adding as a sequential process

Fast Addition

<

e More bits — addition takes longer

e 32 bit addition gets very slow

e Faster addition:

Carry Lookahead

11
Pron:) m}\‘m’\ &e\oxY '_
c-‘—[wd. b_e_J\-l,Je.Q_v\ :/\PV\.L‘
ot ﬁo\ e C(/\m/\ﬂ\'vxﬁ
,_(_b bVJ‘fU\L C&/\""\‘j“'ﬂj

Cﬂ‘f}“fcm\ MH/\ :
[o,,lea,zdr /s ﬁv’e# pﬂ"(/\
Aaongin o (gulp)cireom T

Lrom i Jo OMYVWF

Philipp Koehn

Computer Systems Fundamental: Fast Arithmetic

14 March 2018

Problem: Carry Propagation 12

e 1+1 addition always causes a carry

1+1 + carryl =1, carry 1
1+1 + carry® = 0, carry 1

e 0+0 addition never causes a carry

0+0 + carryl = 1, carry O
0+® + carry® = 0, carry O

e 0+1 and 1+0 addition may cause a carry

®+1 + carryl = 0, carry 1
®+1 + carry® = 1, carry O

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

Generate and Propagate 13

e Compute for each bit, if it generates or propagates carry

e Example

gzmew\kﬁ PMPW}A&
Operand A 0100 1111
Operand B 0110 0001
Generate 0100 0001

Propagate 0110 1111

Carry 1001 111-
e Generate: a; AND b;
e Propagate: a; ORDb;
e Carry: 7
Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

4-Bit Adder

e First compute generate and propagate for all bits

— generate: g; — aj AND b;
— propagate: p; — aj OR bj

4-Bit Adder

e First compute generate and propagate for all bits
— generate: g; — aj AND b;
— propagate: p; — aj OR bj

e Compute carries for each bit

— C1 = go OR (po AND Co)

4-Bit Adder

e First compute generate and propagate for all bits
— generate: g; — aj AND b;
— propagate: p; — aj OR bj

e Compute carries for each bit

— C1 = go OR (po AND Co)
— Ccy = g1 OR (p1 AND gp) OR (p1 AND pg AND o)

4-Bit Adder 4

e First compute generate and propagate for all bits

— generate: g; — aj AND b;
:ﬁr — propagate: p; — aj OR bj
0..«

N

e Compute carries for each bit

Ci = go OR (po AND Co)

Co = g1 OR (p1 AND go) OR (p1 AND pg AND ¢o)

C3 = g2 OR (p2 AND g1) OR (pa AND p; AND g1) OR (p2 AND p; AND po AND c)

C4 = g3 OR (p3 AND g5) OR (p3 AND py AND g5) OR (p3s AND py AND p; AND g4)
OR (p3 AND py AND p; AND po AND Co)

e The carry computations require no recursion

--- but use a lot of gates .

. . . ?
e We may want to stop at 4 bits with this idea .

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

16-Bit Adder

e Combine 4 4-bit adders

e For each 4-bit adder, compute

— "super” propagate = P = po AND p; AND py AND p3

16-Bit Adder

e Combine 4 4-bit adders

e For each 4-bit adder, compute
— "super" propagate = P = py AND p; AND py AND p3

— "super" generate = gz OR (ps AND g5) OR (ps AND pz AND g;)
OR (ps AND py AND p; AND go)

16-Bit Adder g

e Combine 4 4-bit adders

e For each 4-bit adder, compute
— "super" propagate = P = py AND p; AND py AND p3

— "super" generate = gz OR (ps AND g5) OR (ps AND pz AND g;)
OR (ps AND py AND p; AND go)

e Compute super carry C; from super propagate P; and super generate G;
j j j

e Use Cj as 1nput carry to the 4-bit adders

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

Cycles 16

1. compute propagate p; and generate g;

2. compute carry c; \Ll\pgwq
compute super propagate P; and super generate G; f) ahd

3. compute super carry C;

4. carry out all bitwise additions

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

Trade-Off .

e Higher n in n-bit adders

— more gates in circuit

— faster computation

e Modern CPUs can pack more gates on a chip

— speed-up at same clock speed

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

multiplication

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

Recall Method

e Elementary school multiplication:

10101 x 1101

Recall Method

e Elementary school multiplication:

10101 x 1101

Recall Method

e Elementary school multiplication:

10101 x 1101

Recall Method

e Elementary school multiplication:

10101 x 1101

Recall Method

e Elementary school multiplication:

10101 x 1101

Recall Method

e Elementary school multiplication:

10101 x 1101

100010001
(in decimal: 23x13 = 299)

Recall Method s

e Elementary school multiplication:

10101 x 1101

100010001
(in decimal: 23x13 = 299)

e Idea

— shift second opqﬁage to right (get last bit)
— 1f carry: add seéﬁnd-operand to sum
— rotate first operand to left (multiply with binary 10)

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

Multiplication in Hardware

SHIFT LEFT

Multiplyer

" Multiplicant |«———
= 1 _|r
Adder |e—— l
64 l WRITE COﬂtFOl
— Product < Unit

e Control unit runs microprogram

loop

32 times:

if lowest bit of multiplyer=1
add multiplicant to product
shift multiplicant left
shift multiplyer right

e Note:

SHIFT
RIGHT

multiplying 32 bit numbers may result in 64 bit product

Multiplication in Hardware 0 QY

64 - SHIFT LEFT
Multiplicant [<¢——

¥ ¢ * Multiplyer

WRITE
Adder R
i SHIFT
RIGHT
- wrre] CGontrol
— Product [Unit
e Control unit runs microprogram e Speed
loop 32 times: — 32 1terations
if lowest bit of multiplyer=1 — 3 operations each

add multiplicant to product (add + shift + shift)
shift multiplicant left — almost 100 operations

shift multiplyer right

e Note: multiplying 32 bit numbers may result in 64 bit product

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

Parallelize the 3 Operations 21

e The 3 operations in each loop affect different registers

— add: product
— shift left: multiplicant
— shift right: multiplyer

— These can be executed in parallel

(note: read is executed before write)

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

) . =
Parallelize the Iterations 2 QY

e Sum of 32 independently computed values

) . =X
Parallelize the Iterations 2 QY

e Sum of 32 independently computed values

e More adders — some summing can be done in parallel

) . =
Parallelize the Iterations 2 QY

e Sum of 32 independently computed values
e More adders — some summing can be done in parallel

e Binary tree — log, 32 = 5 cycles

MULTI- MULTI- MULTI- MULTI- MULTI- MULTI- MULTI- MULTI-
PLICANT PLICANT PLICANT PLICANT PLICANT PLICANT PLICANT PLICANT
SHIFT SHIFT SHIFT SHIFT SHIFT SHIFT SHIFT
RIGHT RIGHT RIGHT RIGHT RIGHT RIGHT RIGHT
31 30 29 28 3 2 1
Z P4 P4 Z p P P4 P4
|w)] O)] \ |w)] |w)] O) lw)]
Adder Adder Adder Adder

- Adder Adder
g, 3225 o i

Adder

!

PRODUCT

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

MIPS Instructions

e 32 bit multiplication results in 64 bit product

MIPS Instructions

e 32 bit multiplication results in 64 bit product

e Special 64 bit register holds result

— hi: high word
— lo: 1low word

MIPS Instructions 23

32 bit multiplication results in 64 bit product

Special 64 bit register holds result

— hi: high word
— lo: 1low word

Low word has to be retrieved by another instruction

mult $s1, $s2
mflo $s0O

Wl”/\\ 5{393 | ﬁ/q’\’ L\‘ﬁ]") bbs

MIPS Instructions 23

e 32 bit multiplication results in 64 bit product

e Special 64 bit register holds result

— hi: high word
— lo: 1low word

e Low word has to be retrieved by another instruction

mult $s1, $s2
mflo $s0O

e Since this 1s the typical usage, pseudo-instruction
mul $s0, $sl1, $s2

More on that later

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

division

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

Elementary School Division 25

1011 / 10 =

Elementary School Division s G
Jwdad diveser
1011 / 10 =
10

Elementary School Division 25

1011 / 10 =1
10
\)

Elementary School Division 25

1011 / 10 = 10
10
\)
01

Elementary School Division 25

1011 / 10 = 10
10

\)

01

011

Elementary School Division 25

1011 / 10 = 101
10

\)

01

011

9

@emainder

Elementary School Division

1011 / 10 = 101
10
\
01
011
10
1 Remainder

e Algorithm

1. shift divisor sufficiently to the left
2. check if subtraction is possible
yes — add result bit 1, carry out subtraction
no — add result bit 0
3. pull down bit from dividend
4, shift divisor to the right
not possible — done, note remainder
otherwise go to step 2

g

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic

14 March 2018

1.

Algorithm Refinement

Shift divisor sufficiently to the left

e hard for machine to determine
— shift to maximum left
e 32 bit division: use 64 register, push 32 positions

Algorithm Refinement

1. Shift divisor sufficiently to the left

e hard for machine to determine
— shift to maximum left
e 32 bit division: use 64 register, push 32 positions

2. Check if subtraction is possible
yes — add result bit 1, carry out subtraction
no — add result bit 0

e we always carry out subtraction
e 1f overflow, do not use result

1.

Algorithm Refinement

Shift divisor sufficiently to the left

e hard for machine to determine
— shift to maximum left
e 32 bit division: use 64 register, push 32 positions

. Check if subtraction is possible

yes — add result bit 1, carry out subtraction ,
no — add result bit 0 LOVJ\J'\DV\’“

e we always carry out subtraction
e 1f overflow, do not use result

. Pull down bit from dividend

Algorithm Refinement

1. Shift divisor sufficiently to the left

e hard for machine to determine
— shift to maximum left
e 32 bit division: use 64 register, push 32 positions

2. Check if subtraction is possible
yes — add result bit 1, carry out subtraction
no — add result bit 0

e we always carry out subtraction
e 1f overflow, do not use result

3. Pull down bit from dividend

4, Shift divisor to the right
not possible — done, note remainder
otherwise go to step 2

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic

14 March 2018

Division in Hardware 7 QY

e Operations similar to multiplication

— shift divisor
— subtraction

— indication if subtraction should be accepted
e These operations can be parallelized

e But: 1terations cannot be parallelized the same way

(sophisticated prediction methods guess outcome of subtractions)

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

MIPS Instructions 28

e 32 bit division results in 32 bit quotient and 32 bit remainder

— hi: remainder

— lo: quotient

MIPS Instructions 28

e 32 bit division results in 32 bit quotient and 32 bit remainder

— hi: remainder

— lo: quotient

e Quotient has to be retrieved by another instruction

div $s1, $s2
mflo $s0O

l/\/\H/\\ £§3) r‘QVv\m\‘v»(hf

MIPS Instructions 28

e 32 bit division results in 32 bit quotient and 32 bit remainder

— hi: remainder

— lo: quotient

e Quotient has to be retrieved by another instruction

div $s1, $s2
mflo $s0O

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

