Fast Arithmetic

Philipp Koehn
presented by Chang Hwan Choi

14 March 2018

Philipp Koehn

Computer Systems Fundamental: Fast Arithmetic

14 March 2018

[

arithmetic

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

)

Addition (Immediate) 2

A5

e Load 1immediately one number (s® = 2)

1i $s0, 2

o Add 4 ($s1 = $sO® + 4 = 6)

addi $s1, $s0, 4

e Subtract 3 ($s2 = $s1 - 3 = 3)

addi $s2, $s1, -3

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

)

Addition (Register) 3

<

e Load 1immediately one number (s® = 2)

1i $s0, 2

e Add value from $s5 ($s1 = $sO® + $s5)

add $s1, $s0O, $s5

e Subtract value from $s6 ($s2 = $s1 - $s6)

sub $s2, $s1, $s6

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

)

Overflow 4

o

e Signed integers operations: add, addi, and sub

— overflow triggers exceptions
— similar to interrupt

— register $mfcO® contains address of exception program

e Unsigned integers operations: addu, addiu, and subu

— no overflow handling (as in C programming language)

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

)

Code for Detecting Overflow 5

<

e Overflow for unsigned integers operations can be detected from result

e Actual detection code is a bit intricate

e If you are interested

— consult Section 3.2 in Patterson/Hennessy textbook

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

[

fast addition

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

[

Recall: N-Bit Addition QY

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

[

Recall: N-Bit Addition . QY

1+1 = 0, carry the 1

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

[

Recall: N-Bit Addition QY

1+1+1 = 1, carry the 1

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

Recall: N-Bit Addition o QY

copy carry bit

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

Fast Addition n Q!

e We defined n-bit adding as a sequential process
e More bits — addition takes longer

e 32 bit addition gets very slow

e Faster addition: Carry Lookahead

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

Problem: Carry Propagation 2 Q!

e 1+1 addition always causes a carry

1+1 + carryl =1, carry 1
1+1 + carry® = 0, carry 1

e 0+0 addition never causes a carry

0+0 + carryl = 1, carry O
0+® + carry® = 0, carry O

e 0+1 and 1+0 addition may cause a carry

®+1 + carryl = 0, carry 1
®+1 + carry® = 1, carry O

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

Generate and Propagate s G

e Compute for each bit, if it generates or propagates carry

e Example

Operand A 0100 1111
Operand B 0110 0001
Generate 0100 0001
Propagate 0110 1111

Carry 1001 111-
e Generate: a; AND b;
e Propagate: a; ORDb;
e Carry: 7
Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

4-Bit Adder v G

e First compute generate and propagate for all bits

— generate: g; — aj AND bj
— propagate: p; — aj OR bj

e Compute carries for each bit

— C1 = go OR (po AND Co)

— Ccy = g1 OR (p1 AND gp) OR (p1 AND pg AND o)

— Cc3 = g5 OR (p2 AND g1) OR (p2 AND p; AND g1) OR (pa AND p; AND pg AND ¢o)

— c4 = g3 OR (p3 AND g5) OR (ps AND py AND g5) OR (p3 AND py AND p; AND g4)
OR (p3 AND py AND p; AND po AND Cy)

e The carry computations require no recursion
--- but use a lot of gates

e We may want to stop at 4 bits with this idea

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

16-Bit Adder 5 Q)

e Combine 4 4-bit adders

e For each 4-bit adder, compute
— "super" propagate = P = py AND p; AND py AND p3l

— "super" generate = gz OR (ps AND g5) OR (Ps AND pz AND g;)
OR (ps AND py AND p; AND go)h

e Compute super carry C; from super propagate P; and super generate G;
j j j

e Use Cj as 1nput carry to the 4-bit adders

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

Cycles 15 Q@

1. compute propagate p; and generate g;

2. compute carry c;
compute super propagate P; and super generate G;

3. compute super carry C;

4. carry out all bitwise additions

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

Trade-0ff G

e Higher n in n-bit adders

— more gates in circuit

— faster computation

e Modern CPUs can pack more gates on a chip

— speed-up at same clock speed

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

multiplication

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

Recall Method 10 Q!

e Elementary school multiplication:

10101 x 1101HK
10101F
of
10101K
10101H

100010001
(in decimal: 23x13 = 299)I

e Idea

— shift second operand to right (get last bit)
— 1f carry: add second operand to sum
— rotate first operand to left (multiply with binary 10)

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

Multiplication in Hardware 0 QY
64 . . SHIFT LEFT
Multiplicant [<¢——
32
L ¢ - Multiplyer
Adder Bl |
i SHIFT
RIGHT
- wrre| Control
— Product [Unit
e Control unit runs microprogram e Speed
loop 32 times: — 32 1terations
if lowest bit of multiplyer=1 — 3 operations each
add multiplicant to product (add + shift + shift)
shift multiplicant left — almost 100 operations

shift multiplyer right

e Note: multiplying 32 bit numbers may result in 64 bit product

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

Parallelize the 3 Operations g =t

e The 3 operations in each loop affect different registers

— add: product
— shift left: multiplicant
— shift right: multiplyer

— These can be executed in parallel

(note: read is executed before write)

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

Parallelize the Iterations

e Sum of 32 independently computed values

e More adders — some summing can be done in parallel

e Binary tree — log, 32 = 5 cycles

MULTI- MULTI- MULTI- MULTI- MULTI- MULTI- MULTI- MULTI-
PLICANT PLICANT PLICANT PLICANT PLICANT PLICANT PLICANT PLICANT
SHIFT SHIFT SHIFT SHIFT SHIFT SHIFT SHIFT
RIGHT RIGHT RIGHT RIGHT RIGHT RIGHT RIGHT

31 30 29 28 2 1

> > > > > >

Z P4 P4 =z Z =z P4 P4

O)])] O |w)] O)] O

Adder Adder Adder Adder
Adder Adder

Adder

'

PRODUCT

Philipp Koehn

Computer Systems Fundamental: Fast Arithmetic

14 March 2018

MIPS Instructions s QP

e 32 bit multiplication results in 64 bit product

e Special 64 bit register holds result

— hi: high word
— lo: 1low word

e Low word has to be retrieved by another instruction

mult $s1, $s2
mflo $s0O

e Since this 1s the typical usage, pseudo-instruction
mul $s0, $sl1, $s2

More on that later

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

division

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

Elementary School Division

1011 / 10 =1101
10
\
01
011
10
1 Remainder

e Algorithm

1. shift divisor sufficiently to the left
2. check if subtraction is possible
yes — add result bit 1, carry out subtraction
no — add result bit 0
3. pull down bit from dividend
4, shift divisor to the right
not possible — done, note remainder
otherwise go to step 2

At

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic

14 March 2018

Algorithm Refinement 25 G

1. Shift divisor sufficiently to the left

e hard for machine to determine
— shift to maximum left
e 32 bit division: use 64 register, push 32 positions

2. Check if subtraction is possible
yes — add result bit 1, carry out subtraction
no — add result bit 0

e we always carry out subtraction
e 1f overflow, do not use result

3. Pull down bit from dividend

4, Shift divisor to the right
not possible — done, note remainder
otherwise go to step 2

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

Division in Hardware 27 i'

e Operations similar to multiplication

— shift divisor
— subtraction

— indication if subtraction should be accepted
e These operations can be parallelized

e But: i1terations cannot be parallelized the same way

(sophisticated prediction methods guess outcome of subtractions)

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

MIPS Instructions s Q!

e 32 bit division results in 32 bit quotient and 32 bit remainder

— hi: remainder

— lo: quotientl

e Quotient has to be retrieved by another instruction

div $s1, $s2
mflo $sOi

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

