
Fast Arithmetic

Philipp Koehn

presented by Chang Hwan Choi

14 March 2018

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

1

arithmetic

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

2Addition (Immediate)

• Load immediately one number (s0 = 2)

li $s0, 2

• Add 4 ($s1 = $s0 + 4 = 6)

addi $s1, $s0, 4

• Subtract 3 ($s2 = $s1 - 3 = 3)

addi $s2, $s1, -3

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

3Addition (Register)

• Load immediately one number (s0 = 2)

li $s0, 2

• Add value from $s5 ($s1 = $s0 + $s5)

add $s1, $s0, $s5

• Subtract value from $s6 ($s2 = $s1 - $s6)

sub $s2, $s1, $s6

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

4Overflow

• Signed integers operations: add, addi, and sub

– overflow triggers exceptions

– similar to interrupt

– register $mfc0 contains address of exception program

• Unsigned integers operations: addu, addiu, and subu

– no overflow handling (as in C programming language)

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

5Code for Detecting Overflow

• Overflow for unsigned integers operations can be detected from result

• Actual detection code is a bit intricate

• If you are interested
→ consult Section 3.2 in Patterson/Hennessy textbook

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

6

fast addition

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

7Recall: N-Bit Addition

011

+11

110

110

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

8Recall: N-Bit Addition

011

+11

110

110

1+1 = 0, carry the 1

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

9Recall: N-Bit Addition

011

+11

110

110

1+1+1 = 1, carry the 1

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

10Recall: N-Bit Addition

011

+11

110

110

copy carry bit

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

11Fast Addition

• We defined n-bit adding as a sequential process

• More bits → addition takes longer

• 32 bit addition gets very slow

• Faster addition: Carry Lookahead

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

12Problem: Carry Propagation

• 1+1 addition always causes a carry

1+1 + carry1 = 1, carry 1

1+1 + carry0 = 0, carry 1

• 0+0 addition never causes a carry

0+0 + carry1 = 1, carry 0

0+0 + carry0 = 0, carry 0

• 0+1 and 1+0 addition may cause a carry

0+1 + carry1 = 0, carry 1

0+1 + carry0 = 1, carry 0

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

13Generate and Propagate

• Compute for each bit, if it generates or propagates carry

• Example

Operand A 0100 1111

Operand B 0110 0001

Generate 0100 0001

Propagate 0110 1111

Carry 1001 111-

• Generate: ai and bi

• Propagate: ai or bi

• Carry: ?

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

144-Bit Adder

• First compute generate and propagate for all bits

– generate: gi = ai and bi
– propagate: pi = ai or bi

• Compute carries for each bit

– c1 = g0 or (p0 and c0)
– c2 = g1 or (p1 and g0) or (p1 and p0 and c0)
– c3 = g2 or (p2 and g1) or (p2 and p1 and g1) or (p2 and p1 and p0 and c0)
– c4 = g3 or (p3 and g2) or (p3 and p2 and g2) or (p3 and p2 and p1 and g1)

or (p3 and p2 and p1 and p0 and c0)

• The carry computations require no recursion
--- but use a lot of gates

• We may want to stop at 4 bits with this idea

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

1516-Bit Adder

• Combine 4 4-bit adders

• For each 4-bit adder, compute

– "super" propagate = P = p0 and p1 and p2 and p3

– "super" generate = g3 or (p3 and g2) or (p3 and p2 and g1)
or (p3 and p2 and p1 and g0)

• Compute super carry Cj from super propagate Pj and super generate Gj

• Use Cj as input carry to the 4-bit adders

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

16Cycles

1. compute propagate pi and generate gi

2. compute carry ci
compute super propagate Pj and super generate Gj

3. compute super carry Cj

4. carry out all bitwise additions

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

17Trade-Off

• Higher n in n-bit adders

– more gates in circuit

– faster computation

• Modern CPUs can pack more gates on a chip
⇒ speed-up at same clock speed

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

18

multiplication

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

19Recall Method

• Elementary school multiplication:

xxxx10101 x 1101

10101

0

10101

10101

100010001

(in decimal: 23x13 = 299)

• Idea

– shift second operand to right (get last bit)
– if carry: add second operand to sum

– rotate first operand to left (multiply with binary 10)

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

20Multiplication in Hardware

Multiplicant

Product
Control

Unit

Adder
Multiplyer

SHIFT LEFT

SHIFT
RIGHT

WRITE

WRITE

64

64

32

• Control unit runs microprogram

loop 32 times:

if lowest bit of multiplyer=1

add multiplicant to product

shift multiplicant left

shift multiplyer right

• Note: multiplying 32 bit numbers may result in 64 bit product

• Speed

– 32 iterations
– 3 operations each
(add + shift + shift)

→ almost 100 operations

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

21Parallelize the 3 Operations

• The 3 operations in each loop affect different registers

– add: product

– shift left: multiplicant

– shift right: multiplyer

⇒ These can be executed in parallel
(note: read is executed before write)

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

22Parallelize the Iterations

• Sum of 32 independently computed values

• More adders → some summing can be done in parallel

• Binary tree → log2 32 = 5 cycles

Adder

MULTI-
PLICANT
SHIFT
RIGHT
31

MULTI-
PLICANT
SHIFT
RIGHT
30

Adder

MULTI-
PLICANT
SHIFT
RIGHT
29

MULTI-
PLICANT
SHIFT
RIGHT
28

Adder

Adder

MULTI-
PLICANT
SHIFT
RIGHT

3

MULTI-
PLICANT
SHIFT
RIGHT

2

Adder

MULTI-
PLICANT
SHIFT
RIGHT

1

MULTI-
PLICANT

Adder

… …
Adder

… …

PRODUCT

AN
D

AN
D

AN
D

AN
D

AN
D

AN
D

AN
D

AN
D

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

23MIPS Instructions

• 32 bit multiplication results in 64 bit product

• Special 64 bit register holds result

– hi: high word

– lo: low word

• Low word has to be retrieved by another instruction

mult $s1, $s2

mflo $s0

• Since this is the typical usage, pseudo-instruction

mul $s0, $s1, $s2

More on that later

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

24

division

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

25Elementary School Division

xxxx1011 / 10 =

10

0

1

01

0

011

10

1 Remainder

1

• Algorithm
1. shift divisor sufficiently to the left

2. check if subtraction is possible

yes → add result bit 1, carry out subtraction

no → add result bit 0

3. pull down bit from dividend

4. shift divisor to the right

not possible → done, note remainder

otherwise go to step 2

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

26Algorithm Refinement

1. Shift divisor sufficiently to the left

• hard for machine to determine
→ shift to maximum left
• 32 bit division: use 64 register, push 32 positions

2. Check if subtraction is possible

yes → add result bit 1, carry out subtraction

no → add result bit 0

• we always carry out subtraction
• if overflow, do not use result

3. Pull down bit from dividend

4. Shift divisor to the right

not possible → done, note remainder

otherwise go to step 2

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

27Division in Hardware

• Operations similar to multiplication

– shift divisor

– subtraction

– indication if subtraction should be accepted

• These operations can be parallelized

• But: iterations cannot be parallelized the same way

(sophisticated prediction methods guess outcome of subtractions)

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

28MIPS Instructions

• 32 bit division results in 32 bit quotient and 32 bit remainder

– hi: remainder

– lo: quotient

• Quotient has to be retrieved by another instruction

div $s1, $s2

mflo $s0

Philipp Koehn Computer Systems Fundamental: Fast Arithmetic 14 March 2018

