Fast Arithmetic

Philipp Koehn
presented by Chang Hwan Choi

14 March 2018

arithmetic

Addition (Immediate)

- Load immediately one number ($\mathrm{s} 0=2$)

$$
\text { li } \$ s \theta, 2
$$

- Add $4(\$ \mathrm{~s} 1=\$ \mathrm{~s} 0+4=6)$

$$
\text { addi } \$ \mathrm{~s} 1, \$ \mathrm{~s} 0,4
$$

- Subtract 3 (\$s2 = \$s1-3 = 3)

$$
\text { addi } \$ \text { s2, } \$ \mathrm{~s} 1,-3
$$

Addition (Register)

- Load immediately one number ($\mathrm{s} 0=2$)

$$
\text { li } \$ s \theta, 2
$$

- Add value from \$s5 (\$s1 = \$s0 + \$s5)

$$
\text { add } \$ \mathrm{~s} 1, \$ \mathrm{~s} 0, \$ \mathrm{~s} 5
$$

- Subtract value from \$s6 (\$s2 = \$s1 - \$s6)

$$
\text { sub } \$ \mathrm{~s} 2, \$ \mathrm{~s} 1, \$ \mathrm{~s} 6
$$

Overflow

- Signed integers operations: add, addi, and sub
- overflow triggers exceptions
- similar to interrupt
- register $\$ m f c 0$ contains address of exception program
- Unsigned integers operations: addu, addiu, and subu
- no overflow handling (as in C programming language)

Code for Detecting Overflow

- Overflow for unsigned integers operations can be detected from result
- Actual detection code is a bit intricate
- If you are interested
\rightarrow consult Section 3.2 in Patterson/Hennessy textbook

fast addition

Recall: N-Bit Addition

Recall: N-Bit Addition

11
+11

1

0
$1+1=0$, carry the 1

Recall: N-Bit Addition

11
+11

11

10

$$
1+1+1=1 \text {, carry the } 1
$$

Recall: N-Bit Addition

copy carry bit

Fast Addition

- We defined n-bit adding as a sequential process
- More bits \rightarrow addition takes longer
- 32 bit addition gets very slow
- Faster addition: Carry Lookahead

Problem: Carry Propagation

- $1+1$ addition always causes a carry

$$
\begin{aligned}
& 1+1+\text { carry } 1=1, \text { carry } 1 \\
& 1+1+\operatorname{carry} 0=0, \text { carry } 1
\end{aligned}
$$

- 0+0 addition never causes a carry

$$
\begin{aligned}
& 0+\theta+\operatorname{carry} 1=1, \text { carry } \theta \\
& 0+\theta+\operatorname{carry} \theta=0, \text { carry } \theta
\end{aligned}
$$

- $0+1$ and $1+0$ addition may cause a carry

$$
\begin{aligned}
& 0+1+\text { carry } 1=0, \text { carry } 1 \\
& 0+1+\operatorname{carry} \theta=1, \text { carry } 0
\end{aligned}
$$

Generate and Propagate

- Compute for each bit, if it generates or propagates carry
- Example

| Operand A | 0100 | 1111 |
| :--- | :--- | :--- | :--- |
| Operand B | 0110 | 0001 |
| Generate | 0100 | 0001 |
| Propagate | 0110 | 1111 |
| Carry | 1001 | $111-$ |

- Generate: a_{i} AND b_{i}
- Propagate: a_{i} OR b_{i}
- Carry: ?

4-Bit Adder

- First compute generate and propagate for all bits
- generate: $g_{i}=a_{i}$ AND b_{i}
- propagate: $p_{i}=a_{i}$ OR $b_{i} \|$
- Compute carries for each bit
$-\mathrm{c}_{1}=\mathrm{g}_{0}$ OR (p_{0} AND c_{0})
$-\mathrm{c}_{2}=\mathrm{g}_{1}$ OR (p_{1} AND g_{0}) OR (p_{1} AND p_{0} AND c_{0}) I
$-\mathrm{c}_{3}=\mathrm{g}_{2}$ OR (p_{2} AND g_{1}) OR (p_{2} AND p_{1} AND g_{1}) OR (p_{2} AND p_{1} AND p_{0} AND c_{0})
$-c_{4}=g_{3}$ OR (p_{3} AND g_{2}) OR (p_{3} AND p_{2} AND g_{2}) OR (p_{3} AND p_{2} AND p_{1} AND g_{1}) OR (p_{3} AND p_{2} AND p_{1} AND p_{0} AND c_{0})
- The carry computations require no recursion
--- but use a lot of gates
- We may want to stop at 4 bits with this idea

16-Bit Adder

- Combine 4 4-bit adders
- For each 4-bit adder, compute
- "super" propagate $=P=p_{0}$ AND p_{1} AND p_{2} AND p_{3}
- "super" generate $=g_{3}$ OR $\left(p_{3}\right.$ AND $\left.g_{2}\right)$ OR $\left(p_{3}\right.$ AND p_{2} AND $\left.g_{1}\right)$ OR (p_{3} AND p_{2} AND p_{1} AND $\left.g_{0}\right)$ I
- Compute super carry C_{j} from super propagate P_{j} and super generate G_{j}
- Use C_{j} as input carry to the 4-bit adders

Cycles

1. compute propagate p_{i} and generate g_{i}
2. compute carry c_{i} compute super propagate P_{j} and super generate G_{j}
3. compute super carry C_{j}
4. carry out all bitwise additions

Trade-Off

- Higher n in n-bit adders
- more gates in circuit
- faster computation
- Modern CPUs can pack more gates on a chip
\Rightarrow speed-up at same clock speed

multiplication

Recall Method

- Elementary school multiplication:

- Idea
- shift second operand to right (get last bit)
- if carry: add second operand to sum
- rotate first operand to left (multiply with binary 10)

Multiplication in Hardware

- Control unit runs microprogram

loop 32 times:

if lowest bit of multiplyer=1 add multiplicant to product shift multiplicant left shift multiplyer right

- Speed
- 32 iterations
- 3 operations each (add + shift + shift)
\rightarrow almost 100 operations
- Note: multiplying 32 bit numbers may result in 64 bit productl

Parallelize the 3 Operations

- The 3 operations in each loop affect different registers
- add: product
- shift left: multiplicant
- shift right: multiplyer
\Rightarrow These can be executed in parallel (note: read is executed before write)

Parallelize the Iterations

- Sum of 32 independently computed values
- More adders \rightarrow some summing can be done in parallell
- Binary tree $\rightarrow \log _{2} 32=5$ cycles

MIPS Instructions

- 32 bit multiplication results in 64 bit productll
- Special 64 bit register holds result
- hi: high word
- lo: low word
- Low word has to be retrieved by another instruction

$$
\begin{aligned}
& \text { mult \$s1, \$s2 } \\
& \text { mflo \$s0 }
\end{aligned}
$$

- Since this is the typical usage, pseudo-instruction
mul \$s0, \$s1, \$s2

More on that later

division

Elementary School Division

- Algorithm

1. shift divisor sufficiently to the left
2. check if subtraction is possible yes \rightarrow add result bit 1, carry out subtraction no \rightarrow add result bit 0
3. pull down bit from dividend
4. shift divisor to the right not possible \rightarrow done, note remainder otherwise go to step 2

Algorithm Refinement

1. Shift divisor sufficiently to the left

- hard for machine to determine
\rightarrow shift to maximum left
- 32 bit division: use 64 register, push 32 positions

2. Check if subtraction is possible yes \rightarrow add result bit 1 , carry out subtraction no \rightarrow add result bit 0

- we always carry out subtraction
- if overflow, do not use resultl

3. Pull down bit from dividendl
4. Shift divisor to the right not possible \rightarrow done, note remainder otherwise go to step 2

Division in Hardware

- Operations similar to multiplication
- shift divisor
- subtraction
- indication if subtraction should be accepted
- These operations can be parallelized
- But: iterations cannot be parallelized the same way (sophisticated prediction methods guess outcome of subtractions)

MIPS Instructions

- 32 bit division results in 32 bit quotient and 32 bit remainder
- hi: remainder
- lo: quotient
- Quotient has to be retrieved by another instruction

$$
\begin{aligned}
& \text { div \$s1, \$s2 } \\
& \text { mflo \$s0l }
\end{aligned}
$$

