Fast Arithmetic

Philipp Koehn presented by Chang Hwan Choi

14 March 2018

arithmetic

Addition (Immediate)

• Load immediately one number (s0 = 2)

li \$s0, 2

• Add 4 (\$s1 = \$s0 + 4 = 6)

addi \$s1, \$s0, 4

• Subtract 3 (\$s2 = \$s1 - 3 = 3)

addi \$s2, \$s1, -3

Addition (Register)

• Load immediately one number (s0 = 2)

li \$s0, 2

• Add value from \$s5 (\$s1 = \$s0 + \$s5)

add \$s1, \$s0, \$s5

• Subtract value from \$s6 (\$s2 = \$s1 - \$s6)

sub \$s2, \$s1, \$s6

Overflow

- Signed integers operations: add, addi, and sub
 - overflow triggers exceptions
 - similar to interrupt
 - register \$mfc0 contains address of exception program

- Unsigned integers operations: addu, addiu, and subu
 - no overflow handling (as in C programming language)

Code for Detecting Overflow

- Overflow for unsigned integers operations can be detected from result
- Actual detection code is a bit intricate
- If you are interested
 - \rightarrow consult Section 3.2 in Patterson/Hennessy textbook

fast addition

Recall: N-Bit Addition

11 +11 ---

1+1 = 0, carry the 1

Recall: N-Bit Addition

11 +11 ---11 ---10

1+1+1 = 1, carry the 1

11 +11 ---11 ---110

copy carry bit

Fast Addition

- We defined n-bit adding as a sequential process
- \bullet More bits \rightarrow addition takes longer
- 32 bit addition gets very slow

• Faster addition: Carry Lookahead

Problem: Carry Propagation

• 1+1 addition always causes a carry

1+1 + carry1 = 1, carry 1 1+1 + carry0 = 0, carry 1

• 0+0 addition never causes a carry

0+0 + carry1 = 1, carry 0 0+0 + carry0 = 0, carry 0

• 0+1 and 1+0 addition may cause a carry

0+1 + carry1 = 0, carry 1 0+1 + carry0 = 1, carry 0

Generate and Propagate

- Compute for each bit, if it generates or propagates carry
- Example

Operand A	0100	1111
Operand B	0110	0001
Generate	0100	0001
Propagate	0110	1111
Carry	1001	111-

- Generate: $a_i \text{ AND } b_i$
- Propagate: a_i OR b_i
- Carry: ?

4-Bit Adder

- First compute generate and propagate for all bits
 - generate: $g_i = a_i \text{ AND } b_i$
 - propagate: $p_i = a_i \text{ OR } b_i$
- Compute carries for each bit

- The carry computations require no recursion --- but use a lot of gates
- We may want to stop at 4 bits with this idea

16-Bit Adder

- Combine 4 4-bit adders
- For each 4-bit adder, compute
 - "super" propagate = $P = p_0 \text{ AND } p_1 \text{ AND } p_2 \text{ AND } p_3$
 - "super" generate = $g_3 \text{ OR} (p_3 \text{ AND } g_2) \text{ OR} (p_3 \text{ AND } p_2 \text{ AND } g_1)$ OR $(p_3 \text{ AND } p_2 \text{ AND } p_1 \text{ AND } g_0)$
- \bullet Compute super carry C_j from super propagate P_j and super generate G_j
- \bullet Use $C_{\rm j}$ as input carry to the 4-bit adders

Cycles

- 1. compute propagate p_{i} and generate g_{i}
- 2. compute carry c_i compute super propagate P_i and super generate G_i
- 3. compute super carry C_1
- 4. carry out all bitwise additions

Trade-Off

- Higher n in n-bit adders
 - more gates in circuit
 - faster computation
- Modern CPUs can pack more gates on a chip
 - \Rightarrow speed-up at same clock speed

multiplication

Recall Method

• Elementary school multiplication:

- Idea
 - shift second operand to right (get last bit)
 - if carry: add second operand to sum
 - rotate first operand to left (multiply with binary 10)

Control unit runs microprogram
 loop 32 times:
 if lowest bit of multiplyer=1
 add multiplicant to product
 shift multiplicant left
 shift multiplyer right

- Speed
 - 32 iterations
 - 3 operations each
 - (add + shift + shift)
 - ightarrow almost 100 operations
- Note: multiplying 32 bit numbers may result in 64 bit product

Parallelize the 3 Operations

- The 3 operations in each loop affect different registers
 - add: product
 - shift left: multiplicant
 - shift right: multiplyer
- ⇒ These can be executed in parallel (note: read is executed before write)

Parallelize the Iterations

- Sum of 32 independently computed values
- ullet More adders o some summing can be done in parallel
- Binary tree \rightarrow log₂ 32 = 5 cycles

MIPS Instructions

- 32 bit multiplication results in 64 bit product
- Special 64 bit register holds result
 - hi: high word
 - lo: low word
- Low word has to be retrieved by another instruction

mult \$s1, \$s2
mflo \$s0

• Since this is the typical usage, pseudo-instruction

mul \$s0, \$s1, \$s2

More on that later

division

Elementary School Division

1011 / 10 = 101
10
0
01
011
10
1 Remainder

• Algorithm

- 1. shift divisor sufficiently to the left
- 2. check if subtraction is possible yes \rightarrow add result bit 1, carry out subtraction no \rightarrow add result bit 0
- 3. pull down bit from dividend
- 4. shift divisor to the right not possible \rightarrow done, note remainder otherwise go to step 2

Algorithm Refinement

- 1. Shift divisor sufficiently to the left
 - hard for machine to determine
 - \rightarrow shift to maximum left
 - 32 bit division: use 64 register, push 32 positions
- 2. Check if subtraction is possible yes \rightarrow add result bit 1, carry out subtraction no \rightarrow add result bit 0
 - we always carry out subtraction
 - if overflow, do not use result
- 3. Pull down bit from dividend
- 4. Shift divisor to the right not possible \rightarrow done, note remainder otherwise go to step 2

Division in Hardware

- Operations similar to multiplication
 - shift divisor
 - subtraction
 - indication if subtraction should be accepted
- These operations can be parallelized
- But: iterations cannot be parallelized the same way (sophisticated prediction methods guess outcome of subtractions)

MIPS Instructions

- 32 bit division results in 32 bit quotient and 32 bit remainder
 - hi: remainder
 - lo: quotient
- Quotient has to be retrieved by another instruction

div \$s1, \$s2 mflo \$s0