
MIPS Pseudo Instructions and Functions

Philipp Koehn

16 March 2016

Philipp Koehn Computer Systems Fundamentals: MIPS Pseudo Instructions and Functions 16 March 2016

1

pseudo instruction

Philipp Koehn Computer Systems Fundamentals: MIPS Pseudo Instructions and Functions 16 March 2016

2Assembler

• Assembler convert readable instructions into machine code

– assembly language: add $t0, $s1, $s2

– machine code: 00000010 00110010 01000000 00100000

• Make life easier with address labels

Address Instruction
loop ...

...

j loop

Philipp Koehn Computer Systems Fundamentals: MIPS Pseudo Instructions and Functions 16 March 2016

3Pseudo Instructions

• Some instructions would be nice to have

• For instance: load 32 bit value into register

li $s0, 32648278h

• Requires 2 instructions

lui $s0, 3264h

ori $s0, $s0, 8278h

• Pseudo instruction

– available in assembly
– gets compiled into 2 machine code instructions

Philipp Koehn Computer Systems Fundamentals: MIPS Pseudo Instructions and Functions 16 March 2016

4Syntactic Sugar

• Move

move $t0, $t1

• Compiled into add instruction

add $t0, $zero, $t

Philipp Koehn Computer Systems Fundamentals: MIPS Pseudo Instructions and Functions 16 March 2016

5Reserved Register

• Example: load word from arbitrary memory address

lw $s0, 32648278h

• Memory address 32648278h has to be stored in register

• Solution: use reserved register $at

lui $at, 3264h

ori $at, $s0, 8278h

lw $s0, 0($at)

Philipp Koehn Computer Systems Fundamentals: MIPS Pseudo Instructions and Functions 16 March 2016

6Another Example

• Branch if less than

blt $t0, $t1, address

• Compiled into add instruction

slt $at, $t0, $t1

bne $at, $zero, address

(slt = set if less than)

Philipp Koehn Computer Systems Fundamentals: MIPS Pseudo Instructions and Functions 16 March 2016

7

code example

Philipp Koehn Computer Systems Fundamentals: MIPS Pseudo Instructions and Functions 16 March 2016

8Factorial

• Compute n! = n× n− 1× n− 2× ...× 2× 1

• Iterative loop

– initialize sum with n

– loop through n-1, n-2, ..., 1

– multiple sum with loop variable

Philipp Koehn Computer Systems Fundamentals: MIPS Pseudo Instructions and Functions 16 March 2016

9Implementation

• Registers
– $a0: n (loop variable)

– $v0: sum

• Initialize
move $v0, $a0 # initialize sum with n

• Loop setup
loop:

addi $a0, $a0, -1 # decrement n

beq $a0, $zero, exit # = 0? then done

...

j loop

• Multiplication
mul $v0, $v0, $a0 # sum = sum * n

Philipp Koehn Computer Systems Fundamentals: MIPS Pseudo Instructions and Functions 16 March 2016

10Code

.text

main:

li $a0, 5 # compute 5!

move $v0, $a0 # initialize sum with n

loop:

addi $a0, $a0, -1 # decrement n

beq $a0, $zero, exit # = 0? then done

mul $v0, $v0, $a0 # sum = sum * n

j loop

exit:

jr $ra # done

Philipp Koehn Computer Systems Fundamentals: MIPS Pseudo Instructions and Functions 16 March 2016

11

jumps and subroutines

Philipp Koehn Computer Systems Fundamentals: MIPS Pseudo Instructions and Functions 16 March 2016

12Jump

• MIPS instruction

j address

• Only 26 bits available for address (6 bits of op-code)

⇒ 32 bit address constructed by concatenating

– upper 4 bits from current program counter
– 26 bits as specified
– 2 bits with value "0"

• Proper 32 bit addressing available with

jr $register

Philipp Koehn Computer Systems Fundamentals: MIPS Pseudo Instructions and Functions 16 March 2016

13Jump and Link: Subroutines

• MIPS instructions

jal address

jalr $register

• Address handling as before

• Stores return address in register $ra (31st register)

• Return from subroutine

jr $ra

Philipp Koehn Computer Systems Fundamentals: MIPS Pseudo Instructions and Functions 16 March 2016

14Register Conventions

• Arguments to subroutine: registers $a0, $a1, $a2, $a3

• Return values from subroutine: registers $v0, $v1, $v2, $v3

• Conceptually

($v0, $v1, $v2, $v3) = f($a0, $a1, $a2, $a3)

Philipp Koehn Computer Systems Fundamentals: MIPS Pseudo Instructions and Functions 16 March 2016

15Example

• Subroutine to add three numbers

main:

li $a0, 10

li $a1, 21

li $a2, 33

jal add3

add3:

add $v0, $a0, $a1

add $v0, $v0, $a2

jr $ra

Philipp Koehn Computer Systems Fundamentals: MIPS Pseudo Instructions and Functions 16 March 2016

16Another Example

• Subroutine for a + b - c
main:

li $a0, 10

li $a1, 21

li $a2, 33

jal add-and-sub

add-and-sub:

add $a0, $a0, $a1

move $a1, $a2

jal my-sub

jr $ra

my-sub:

sub $v0, $a0, $a1

jr $ra

• What could go wrong?

Philipp Koehn Computer Systems Fundamentals: MIPS Pseudo Instructions and Functions 16 March 2016

17Safekeeping

• Recursive calls: must keep return address $ra in safe place

• May also want to preserve other registers

• Temporary registers $t0-$t9 may be overwritten by subroutine

• Saved registers $s0-$s7 must be preserved by subroutine

• Note

– all this is by convention

– you have to do this yourself

Philipp Koehn Computer Systems Fundamentals: MIPS Pseudo Instructions and Functions 16 March 2016

18

stack

Philipp Koehn Computer Systems Fundamentals: MIPS Pseudo Instructions and Functions 16 March 2016

19Stack

• Recall: 6502

– JSR stored return address on stack

– RTS retrieved return address from stack

– special instructions to store accumulator, status register

• MIPS: software stack

• By convention: stack pointer register $sp (29th register)

• Why not always use the stack? It’s slow

Philipp Koehn Computer Systems Fundamentals: MIPS Pseudo Instructions and Functions 16 March 2016

20Alternate Idea

• Store return address in saved register $s0

• But: now have to preserve $s0 on stack

Philipp Koehn Computer Systems Fundamentals: MIPS Pseudo Instructions and Functions 16 March 2016

21Store Return Address on Stack

• Decrease stack pointer
addi $sp, $sp, -4

32-bit address has 4 bytes

• Store return address
sw $ra 0($sp)

sw = store word

• Stack pointer points to last used address

Philipp Koehn Computer Systems Fundamentals: MIPS Pseudo Instructions and Functions 16 March 2016

22Retrieve Return Address from Stack

• Load return address
lw $ra 0($sp)

lw = store word

• Increase stack pointer
addi $sp, $sp, 4

Philipp Koehn Computer Systems Fundamentals: MIPS Pseudo Instructions and Functions 16 March 2016

23Multiple Registers

• Store multiple registers

addi $sp, $sp, -12

sw $ra 0($sp)

sw $s0 4($sp)

sw $s1 8($sp)

• Load

lw $ra 0($sp)

lw $s0 4($sp)

lw $s1 8($sp)

addi $sp, $sp, 12

Philipp Koehn Computer Systems Fundamentals: MIPS Pseudo Instructions and Functions 16 March 2016

24Frame Pointer

• What if we want to consult values stored on the stack?

• Example

– subroutine stores return address and some save registers on stack
– some code does something
(maybe even store more things on stack)

– subroutine wants to consult stored return address

• Stack pointer has changed
→ may be difficult to track down

• Solution

– store entry stack pointer in frame pointer $fp (30th register)
move $fp, $sp

– retrieve return address using frame pointer
lw $s0, 0($fp)

Philipp Koehn Computer Systems Fundamentals: MIPS Pseudo Instructions and Functions 16 March 2016

25

example

Philipp Koehn Computer Systems Fundamentals: MIPS Pseudo Instructions and Functions 16 March 2016

26Recall: Factorial

.text

li $a0, 5 # compute 5!

move $v0, $a0 # initialize sum with n

loop:

addi $a0, $a0, -1 # decrement n

beq $a0, $zero, exit # = 0? then done

mul $v0, $v0, $a0 # sum = sum * n

j loop

exit:

jr $ra # done

Philipp Koehn Computer Systems Fundamentals: MIPS Pseudo Instructions and Functions 16 March 2016

27Implemented as a Function

• Subroutine call (function argument in $a0)

main:

li $a0, 5 # compute 5!

jal fact # call function

• Return from subroutine (return value is in $v0)

exit:

jr $ra # done

Philipp Koehn Computer Systems Fundamentals: MIPS Pseudo Instructions and Functions 16 March 2016

28Scaffolding

.text

main:

li $a0, 5 # compute 5!

jal fact # call function

jr $ra # done

fact:

(old code)

exit:

jr $ra # done

Philipp Koehn Computer Systems Fundamentals: MIPS Pseudo Instructions and Functions 16 March 2016

29Complete Code

.text

main:

li $a0, 5 # compute 5!

jal fact # call function

jr $ra # done

fact:

move $v0, $a0 # initialize sum with n

loop:

addi $a0, $a0, -1 # decrement n

beq $a0, $zero, exit # = 0? then done

mul $v0, $v0, $a0 # sum = sum * n

j loop

exit:

jr $ra # done

Philipp Koehn Computer Systems Fundamentals: MIPS Pseudo Instructions and Functions 16 March 2016

30Recursive Implementation

• Idea: f(n) = f(n-1) * n

• Recursive call needs to preserve

– return address

– argument (n)

Philipp Koehn Computer Systems Fundamentals: MIPS Pseudo Instructions and Functions 16 March 2016

31Termination Condition

• Check if argument is 0

fact:

beq $a0, $zero, final # = 0? then done

(common case)

final:

li $v0, 1

jr $ra # done

• Note: no need to preserve registers

Philipp Koehn Computer Systems Fundamentals: MIPS Pseudo Instructions and Functions 16 March 2016

32Core Recursion

• Recursive call f(n-1)

addi $a0, $a0, -1 # decrement n

jal fact # recursive call -> $v0 is f(n-1)

• Multiply with argument

mul $v0, $v0, $a0 # f(n-1) * n

Philipp Koehn Computer Systems Fundamentals: MIPS Pseudo Instructions and Functions 16 March 2016

33Save and Restore Registers

• Save registers

addi $sp, $sp, -8

sw $ra 0($sp) # return address on stack

sw $a0 4($sp) # argument on stack

• Restore registers

lw $ra 0($sp) # return address from stack

lw $a0 4($sp) # argument from stack

addi $sp, $sp, 8

Philipp Koehn Computer Systems Fundamentals: MIPS Pseudo Instructions and Functions 16 March 2016

34Complete Code
fact:

beq $a0, $zero, final # = 0? then done

addi $sp, $sp, -8

sw $ra 0($sp) # return address on stack

sw $a0 4($sp) # argument on stack

addi $a0, $a0, -1 # decrement n

jal fact # recursive call -> $v0 is f(n-1)

lw $ra 0($sp) # return address from stack

lw $a0 4($sp) # argument from stack

addi $sp, $sp, 8

mul $v0, $v0, $a0 # f(n-1) * n

jr $ra # done

final:

li $v0, 1

jr $ra # done

Philipp Koehn Computer Systems Fundamentals: MIPS Pseudo Instructions and Functions 16 March 2016

