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Control Hazard |

e Also called branch hazard
e Selection of next instruction depends on outcome of previous

e Example

beq $s0, $s1, ££40
sub $t0®, $s0, $t3

— sub instruction only executed if branch condition fails

— cannot start until branch condition result known
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Methods )

e Assume branch not taken

— start execution of following instructions

— if wrong, flush them

e Reduce delay of branches

— compute branch address and condition in fewer cycles

— less flushing

e Dynamic branch prediction
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assume branch not taken
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Branch: Address Calculation 5
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Branch: Condition Checking 6
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Idea 7

e Assume branch not taken
e Execute the subsequent instructions

e If branch should have been taken

— flush out subsequent instruction processing
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. =X
Branch Execution : i-','

200 400 6?0 8?0 1OPO 12P0
| | R

beqg $s0,$s1,££40

IF
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. =X
Branch Execution 9 i-','

200 400 600 800 1000 1200
o, | | | | | | _
I l N—
beqg $s0,$s1,££40
IF ID
Pty
IF

Philipp Koehn Computer Systems Fundamentals: Branch Prediction 30 March 2018



Branch Execution

G

2(?0 4?0 6(?0 8(|)O 1 O|00 1 2|OO
geq $s0,$s1,££f40
IF ID >EX
IF ID
Iz
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Branch Execution

G
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Branch Execution

2(?0 40|O 6(?0 8(|)O 10|00 12|00
geq $s0,$s1,££f40
IF ID >EX MEM WB
IF ID >EX MEM o’
IF ID >EX
IF ID
IF
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] . =X
Take Branch: Invalidates Instructions : @V
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] =
Flush Instructions 1+ QY
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Flush Instructions

e Change program counter <4a r¥mf%x%'¢AAAV“

e Instructions in stages IF, ID, EX, MEM

= Re-fetch instruction.ir(}?i) krav\dp. 4ﬂKF3AL’

— Zero out control lines for ID, EX, MEM

r
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fast branch execution
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Idea 17

e Branch instruction

beq $s0, $s1, ££40

EVYQ

e Computations required

— target address (PC + specified offset)

— condition check (simple equality)

. . I\ (]:Y>
e Tdea: carry out these computations quickly —)
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Branch Computation in ID Stage 18

e Role of ID stage

— decode what the instruction is

— look up register values

e Now

— just assume that it 1s a branch
— add special wiring for branch calculation

— 1f not a branch, ignore results

e Benefit: reduce branch flushing from 3 to 1 instruction

Ay Swe
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Register Values for Condition Check zo
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Address Calculation 21
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Data Hazard 22

e Condition check requires register values
e These may be changed by preceding instructions in pipeline
= Forwarding and stalling needed

e Adds complexity
—
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branch prediction
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Prediction 24

e So far: predict branch not taken

e Compiler may order instructions — more frequent case in sequence

—

e Now: dynamic branch prediction based on branch history table

AP Q{@CWE)V\ bwdwfj
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Branch History Table

e Idea: keep record of branch history

e Many branches, many executions



Branch History Table 25

e Idea: keep record of branch history
e Many branches, many executions
e Keep 1t simple:
— index by lower order bits of branch address (ignore collisions)

— just store last decison (1 bit)

e Special memory in ID stage
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Example: Loop 26

e Example: Loop 9 times, then exit loop

e False predictions

— last iteration (not taken, after 9 times taken)

— first iteration (taken, previously exited loop)
e Prediction accuracy: 8/10 = 80%

e Can we do better?
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2 Bits 27

e Idea: record frequency

took branch took branch took branch took
branch

not
taken

not taken not taken not taken

PUQ,\\CP
PTAEM

e Previous example (loop 9 times, then exit loop)

Iteration Value Prediction
1 take branch (correct)
2 3 take branch (correct)
9 3 take branch (correct)
10 3 take branch (wrong)
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