Branch Prediction

. WG -
Philipp Koehn HAU\Q \:r{Jo\\/ IO/Q,C

~30-Maxrech—2618
Il Ocb ol9

Philipp Koehn Computer Systems Fundamentals: Branch Prediction 30 March 2018

Control Hazard |

e Also called branch hazard
e Selection of next instruction depends on outcome of previous

e Example

beq $s0, $s1, ££40
sub $t0®, $s0, $t3

— sub instruction only executed if branch condition fails

— cannot start until branch condition result known

Philipp Koehn Computer Systems Fundamentals: Branch Prediction 30 March 2018

Methods)

e Assume branch not taken

— start execution of following instructions

— if wrong, flush them

e Reduce delay of branches

— compute branch address and condition in fewer cycles

— less flushing

e Dynamic branch prediction

Philipp Koehn Computer Systems Fundamentals: Branch Prediction 30 March 2018

assume branch not taken

Philipp Koehn Computer Systems Fundamentals: Branch Prediction 30 March 2018

Instruction Fetch

IF:

Pipelined Datapath

ID: Instruction decoder

register file read

EX: Execute /
address calculate

MEM:
Memory access I Write Back

<
<«

4—>

> Add

v

PC

|
Selector

Sign
—>
extended

\

—e—»| Address *>
Instruction
o
Memory
Instruction [} ¢

Read Read
register 1 data 1
Read
register 2

Registers
Write Read
reqgister data 2
Write
data

Selector

g

WB:

Write
data

Address

Read
data

Data
Memory

\ J

Philipp Koehn

Computer Systems Fundamentals: Branch Prediction

30 March 2018

Branch: Address Calculation 5

|
MEM: | WB:

Memory access I Write Back

IF:
Instruction Fetch

EX: Execute /
address calculate

ID: Instruction decoder
register file read

4—>]

J

> Add

_>
Sign Shift
extended Left

\ 4
1S
g
8 PC [—e—| Address > Read Read ~
L 5 g register 1 data 1
Instruction Read -
[.
Memory register 2 Address
Registers Read !
Instruction [, _¢ , Wri.te Read | data
register data 2 Data
. Memory
Write Write
r data data

Philipp Koehn Computer Systems Fundamentals: Branch Prediction 30 March 2018

Branch: Condition Checking 6

|
MEM: I WB:

Memory access I Write Back

IF:
Instruction Fetch

EX: Execute /
address calculate

ID: Instruction decoder
register file read

4—»

J

> Add

_>
Sign Shift
extended Left
\ 4
1S
> L
$ (| PC [-*>| Address 4| Read Read |,
5 g register 1 data 1
Instruction Read -
[o o . »| =
Memory register 2 "l o Address
Registers 3 Read |,
Instruction |, _q 5| Write Read 3 data
register data2 |” Data
. Memory
b Write
r data data

Philipp Koehn Computer Systems Fundamentals: Branch Prediction 30 March 2018

Idea 7

e Assume branch not taken
e Execute the subsequent instructions

e If branch should have been taken

— flush out subsequent instruction processing

Philipp Koehn Computer Systems Fundamentals: Branch Prediction 30 March 2018

. =X
Branch Execution : i-','

200 400 6?0 8?0 1OPO 12P0
| | R

beqg $s0,$s1,££40

IF

Philipp Koehn Computer Systems Fundamentals: Branch Prediction 30 March 2018

. =X
Branch Execution 9 i-','

200 400 600 800 1000 1200
o, | | | | | | _
I l N—
beqg $s0,$s1,££40
IF ID
Pty
IF

Philipp Koehn Computer Systems Fundamentals: Branch Prediction 30 March 2018

Branch Execution

G

2(?0 4?0 6(?0 8(|)O 1 O|00 1 2|OO
geq $s0,$s1,££f40
IF ID >EX
IF ID
Iz

Philipp Koehn

Computer Systems Fundamentals: Branch Prediction

30 March 2018

Branch Execution

G

2?0 4(?0 6(?0 8(|)O 1000 1200
| |
b 0,$s1,££40
sa ssvse N
IF ID >EX MEM | £51sm om0~ {Cw,um
q
IF ID >EX
novri ‘/\CAV‘(’
IF ID LM
ME M
or WHR
IF

Philipp Koehn

Computer Systems Fundamentals: Branch Prediction

30 March 2018

Branch Execution

2(?0 40|O 6(?0 8(|)O 10|00 12|00
geq $s0,$s1,££f40
IF ID >EX MEM WB
IF ID >EX MEM o’
IF ID >EX
IF ID
IF

Philipp Koehn

Computer Systems Fundamentals: Branch Prediction

30 March 2018

] . =X
Take Branch: Invalidates Instructions : @V

MEM

>EX

200 400
| |
beqg $s0,$s1,££40
IF ID >EX
IF ID
Iz

A

\\;iffftig//

\

\

|
e

3

o)

|

we |

i

Philipp Koehn Computer Systems Fundamentals: Branch Prediction

30 March 2018

] =
Flush Instructions 1+ QY

200 400 6(?0 8(|)O 1 O|OO 1 2|OO
| | R

beqg $s0,$s1,££40

IF ID >EX MEM WB

bubble

X |

bubble

X
X (e
X

—_——
S
>
2
’?._
<

Philipp Koehn Computer Systems Fundamentals: Branch Prediction 30 March 2018

Flush Instructions

e Change program counter <4a r¥mf%x%'¢AAAV“

e Instructions in stages IF, ID, EX, MEM

= Re-fetch instruction.ir(}?i) krav\dp. 4ﬂKF3AL’

— Zero out control lines for ID, EX, MEM

r

Philipp Koehn Computer Systems Fundamentals: Branch Prediction

30 March 2018

fast branch execution

Philipp Koehn Computer Systems Fundamentals: Branch Prediction 30 March 2018

Idea 17

e Branch instruction

beq $s0, $s1, ££40

EVYQ

e Computations required

— target address (PC + specified offset)

— condition check (simple equality)

. . I\ (]:Y>
e Tdea: carry out these computations quickly —)

Philipp Koehn Computer Systems Fundamentals: Branch Prediction 30 March 2018

Branch Computation in ID Stage 18

e Role of ID stage

— decode what the instruction is

— look up register values

e Now

— just assume that it 1s a branch
— add special wiring for branch calculation

— 1f not a branch, ignore results

e Benefit: reduce branch flushing from 3 to 1 instruction

Ay Swe

Philipp Koehn Computer Systems Fundamentals: Branch Prediction 30 March 2018

Pipeline with

IF:

Instruction Fetch

ID: Instruction decoder

register file read

EX: Execute /
address calculate

Unit

MEM:

Memory access I Write Back

<
<«

4 —>

> Add

\]

PC

!
Selector

—e—»| Address

Instruction
Memory

Instruction

Branch

Handling
Unit

|_' data

Sign
extended

| Read Read
register 1 data 1
J Read
register 2
Registers
o Write Read
register data 2
Write

\

Y

> ALU

Selector

Zero

Result

— L

Address
Read
data
Data
Memory
Write
data

Y

Philipp Koehn

Computer Systems Fundamentals: Branch Prediction

30 March 2018

Register Values for Condition Check zo

IF:

Instruction Fetch

ID: Instruction decoder

register file read

EX: Execute /
address calculate

MEM:

|
WB:

Memory access I Write Back

4—>

> Add

Branch

Handling
Unit

\

_>
® .
- Shift
extended
E
© (> PC [-»| Address ¢+ Read Read 141 >
e g register 1 data 1 Zerole —
Instruction Read > ALU L -
P . »| =
Memory register 2 "l o Result Address
Registers 3 Read ||
Instruction |, _¢ | Write Read $ data
register data 2 Data
. Memory
Write Write
|_' data data
| | | |
' | ' '
Philipp Koehn Computer Systems Fundamentals: Branch Prediction 30 March 2018

Address Calculation 21

| | |
IF: | ID: Instruction decoder | EX: Execute / | MEM: | WB:
Instruction Fetch I register file read I address calculate I Memory access I Write Back
| | | |
| | | |
' Branch ' | |
4—> Handling
Unit
> Add 1 - —
> >
| Sign
" =
[
> @ P PC > Address ¢+ Read Re —>
|, g register 1 data
Instruction JER Read -
Memory register 2 Address
Registers Read |
Instruction |, _¢ | Write Rea data
register data Data
.—-7 . Memory
R& [Write Write
Q\{ eC \A\ |’" data /Y\ A

\ . : |
2§ | I] T LRV AN |
A ' \&_W\lﬁw_ e ' '

Philipp Koehn Computer Systems Fundamentals: Branch Prediction 30 March 2018

Data Hazard 22

e Condition check requires register values
e These may be changed by preceding instructions in pipeline
= Forwarding and stalling needed

e Adds complexity
—

Philipp Koehn Computer Systems Fundamentals: Branch Prediction 30 March 2018

branch prediction

Philipp Koehn Computer Systems Fundamentals: Branch Prediction 30 March 2018

Prediction 24

e So far: predict branch not taken

e Compiler may order instructions — more frequent case in sequence

—

e Now: dynamic branch prediction based on branch history table

AP Q{@CWE)V\ bwdwfj

Philipp Koehn Computer Systems Fundamentals: Branch Prediction 30 March 2018

Branch History Table

e Idea: keep record of branch history

e Many branches, many executions

Branch History Table 25

e Idea: keep record of branch history
e Many branches, many executions
e Keep 1t simple:
— index by lower order bits of branch address (ignore collisions)

— just store last decison (1 bit)

e Special memory in ID stage

Philipp Koehn Computer Systems Fundamentals: Branch Prediction 30 March 2018

Example: Loop 26

e Example: Loop 9 times, then exit loop

e False predictions

— last iteration (not taken, after 9 times taken)

— first iteration (taken, previously exited loop)
e Prediction accuracy: 8/10 = 80%

e Can we do better?

Philipp Koehn Computer Systems Fundamentals: Branch Prediction 30 March 2018

2 Bits 27

e Idea: record frequency

took branch took branch took branch took
branch

not
taken

not taken not taken not taken

PUQ,\\CP
PTAEM

e Previous example (loop 9 times, then exit loop)

Iteration Value Prediction
1 take branch (correct)
2 3 take branch (correct)
9 3 take branch (correct)
10 3 take branch (wrong)

Philipp Koehn Computer Systems Fundamentals: Branch Prediction 30 March 2018

