
Cache Control

Philipp Koehn

4 April 2018

Philipp Koehn Computer Systems Fundamentals: Cache Control 4 April 2018

1Memory Tradeoff

• Fastest memory is on same chip as CPU
... but it is not very big (say, 32 KB in L1 cache)

• Slowest memory is DRAM on different chips
... but can be very large (say, 256GB in compute server)

• Goal: illusion that large memory is fast

• Idea: use small memory as cache for large memory

Philipp Koehn Computer Systems Fundamentals: Cache Control 4 April 2018

2Simplified View

Processor

Smaller memory mirrors some of the large memory content

Philipp Koehn Computer Systems Fundamentals: Cache Control 4 April 2018

3Direct Mapping

• Idea: keep mapping from cache to main memory simple

⇒ Use part of the address as index to cache

• Address broken up into 3 parts

– memory position in block (offset)

– index

– tag to identify position in main memory

• If blocks with same index are used, older one is overwritten

Philipp Koehn Computer Systems Fundamentals: Cache Control 4 April 2018

4Direct Mapping: Example

• Main memory address (32 bit)

0010 0011 1101 1100 0001 0011 1010 1111

• Block size: 256 bytes (8 bits)

• Cache size: 1MB (20 bits)

0010 0011 1101 1100 0001 0011 1010 1111

Tag Index Offset

Philipp Koehn Computer Systems Fundamentals: Cache Control 4 April 2018

5Cache Organization

• Mapping of the address

0010 0011 1101 1100 0001 0011 1010 1111

Tag Index Offset

• Cache data structure

Index Tag Valid Data
4096 slots (12 bits) (1 bit) 256 bytes

000

001 xx xx xx xx xx xx xx xx

002

...

fff

Philipp Koehn Computer Systems Fundamentals: Cache Control 4 April 2018

6

cache read

Philipp Koehn Computer Systems Fundamentals: Cache Control 4 April 2018

7Cache Hit

Cache Main
MemoryCPU

• Memory request from CPU

• Data found in cache

• Send data to CPU

Philipp Koehn Computer Systems Fundamentals: Cache Control 4 April 2018

8Cache Circuit

Tag Index Offset

256 byte MemoryTag Valid

Decoder

256 byte MemoryTag Valid

Main
Memory

CPU

256 byte MemoryTag Valid

256 byte MemoryTag Valid

256 byte MemoryTag Valid

256 byte MemoryTag Valid

• Address split up into tag, index, and offset

• Index contains address of block in cache

• Decoded to select correct row

Philipp Koehn Computer Systems Fundamentals: Cache Control 4 April 2018

9Cache Circuit

Tag Index Offset

256 byte MemoryTag Valid

Decoder

256 byte MemoryTag Valid

=

AND
Main

Memory

CPU• Check tag for equality

• Check if valid bit is set

Philipp Koehn Computer Systems Fundamentals: Cache Control 4 April 2018

10Cache Circuit

Tag Index Offset

256 byte MemoryTag Valid

Decoder

256 byte MemoryTag Valid

=

AND

Select

Main
Memory

CPU• Retrieve correct byte from block
(identified by offset)

• Use cache only if valid and correct tag

Philipp Koehn Computer Systems Fundamentals: Cache Control 4 April 2018

11

cache miss

Philipp Koehn Computer Systems Fundamentals: Cache Control 4 April 2018

12Cache Miss

Cache Main
MemoryCPU

• Memory request from CPU

• Data not found in cache

• Memory request from cache to main memory

• Send data from memory to cache

• Store data in cache

• Send data to CPU

Philipp Koehn Computer Systems Fundamentals: Cache Control 4 April 2018

13Cache Miss

• Requires load of block from main memory

• Blocks execution of instructions

• Recall discussion of memory access speeds

– CPU clock cycle: 3 GHz → 0.33ns per instruction

– DRAM speeds: 50ns

⇒ Significant delay (150 instruction cycles stalled)

Philipp Koehn Computer Systems Fundamentals: Cache Control 4 April 2018

14Block Loading

Tag Index Offset

Tag Valid

Decoder

256 byte MemoryTag Valid

=

AND

Select

Main
Memory

CPU

256 byte Memory

• Example
– block size 256 bytes
– request to read memory address $00d3ff53

• Cache miss triggers read of block $00d3ff00-$00d3ffff

Philipp Koehn Computer Systems Fundamentals: Cache Control 4 April 2018

15Read $00d3ff53

00

20
10

30
40
50
60
70
80
90
a0
b0
c0
d0
e0
f0

53

Transfer
Block
from
Main

Memory

• But: this requires 53 read cycles before relevant byte is loaded

Philipp Koehn Computer Systems Fundamentals: Cache Control 4 April 2018

16Better

00

20
10

30
40
50
60
70
80
90
a0
b0
c0
d0
e0
f0

53

Transfer
Block
from
Main

Memory

• Read requested byte first

Philipp Koehn Computer Systems Fundamentals: Cache Control 4 April 2018

17

cache write

Philipp Koehn Computer Systems Fundamentals: Cache Control 4 April 2018

18Write Through

Cache Main
MemoryCPU

• Writes change value in cache

• Write through: immediately store changed value in memory

• Drawback: slows down every write

Philipp Koehn Computer Systems Fundamentals: Cache Control 4 April 2018

19Write Back

Cache Main
MemoryCPU

• Only change value in cache

• Record that cache block is changed with "dirty bit"

• Write back to RAM only when block is pre-empted

Philipp Koehn Computer Systems Fundamentals: Cache Control 4 April 2018

20Write Buffer

• CPU does not need to wait for write to finish

• Write buffer

– store value in write buffer

– transfer values from write buffer to main memory in background

– free write buffer

• This works fine, unless process overloads write buffer

Philipp Koehn Computer Systems Fundamentals: Cache Control 4 April 2018

21Write Miss

• Problem: CPU writes to address X, but X is not cached

• Need to load block into cache first

• Write allocate

– allocate cache slot

– write in value for X

– load remaining values from main memory

– set dirty bit

Philipp Koehn Computer Systems Fundamentals: Cache Control 4 April 2018

22

split cache

Philipp Koehn Computer Systems Fundamentals: Cache Control 4 April 2018

23MIPS Pipeline

IF ID MEM WBEX

• 2 stages access memory

– IF: instruction fetch loads current instruction
– MEM: memory stage reads and writes data

⇒ 2 memory caches in processor

– instruction memory

– data memory

Philipp Koehn Computer Systems Fundamentals: Cache Control 4 April 2018

24Architecture

CPU

Instruction
cache

Data
cache

Main Memory

Philipp Koehn Computer Systems Fundamentals: Cache Control 4 April 2018

25Comments

• IF and MEM operations can be executed simultanously

• Possible drawback: same memory block in both caches

... but very unlikely: code and data usually separated

• Cache misses possible in both caches
→ contention for memory lookup, blocking

• Instruction cache simpler: no writes

Philipp Koehn Computer Systems Fundamentals: Cache Control 4 April 2018

