
x86 Introduction

Philipp Koehn

11 April 2018

Philipp Koehn Computer Systems Fundamentals: x86 Introduction 11 April 2018

1x86

• Yet another processor architecture...

• Why do we care?

• x86 is the dominant chip in today’s computers (Mac, Windows, Linux)
– 100 million chips sold per year

– $5 billion annual development budget

• We will focus on C programs get compiled into x86 machine code

Philipp Koehn Computer Systems Fundamentals: x86 Introduction 11 April 2018

2

history

Philipp Koehn Computer Systems Fundamentals: x86 Introduction 11 April 2018

38086

• 16-bit processer released in 1978 by Intel

• 8 16-bit internal registers, 20-bit address bus

• Ahead of its time, too expensive, slow sales

• 8-bit processors dominated the market

Philipp Koehn Computer Systems Fundamentals: x86 Introduction 11 April 2018

48088

• Scaled down version of 8068

• 8-bit data bus instead of 16-bit

• But looked the same from programmer’s perspective

• Clock speed 4.77 MHz

• Chosen by IBM for its PC, released 1981
– IBM PC for sale for $1,265 ($3,360 in 2016 dollars)

– Apple][for sale for $1,355 ($3,599 in 2016 dollars)

Philipp Koehn Computer Systems Fundamentals: x86 Introduction 11 April 2018

580286

• Released by intel in 1981, used in IBM AT in 1984
• More instructions, e.g., support for multi-tasking
• Faster

– clock speed 4.77 MHz → 6 MHz

– average number of cycles per instructions 12 → 4.5

• Downward compatible: "real" mode vs. "protected" mode

Philipp Koehn Computer Systems Fundamentals: x86 Introduction 11 April 2018

6386

• Released in 1985, in computers late 1986, popular until early 1990s
• 32-bit processor, but downward compatible to 286, 8086
• Virtual real mode

– allows different processes use different parts of memory
– crashes do not affect whole systems
→ true multi-tasking

Philipp Koehn Computer Systems Fundamentals: x86 Introduction 11 April 2018

7486

• Up to 120 MHz
• Average number of cycles per instructions 4 → 2

• Internal L1 cache (hit ratio 90-95%)
• Burst memory (after initial load, 12 bytes transfered in 1 cycle)
• Internal math co-processor
• Enabled graphical user interfaces ("Windows")

Philipp Koehn Computer Systems Fundamentals: x86 Introduction 11 April 2018

8586 (Pentium)

• 75-266 MHz
• 2 data paths: can execute 2 instructions in parallel

• 2 internal caches: instruction and data

Philipp Koehn Computer Systems Fundamentals: x86 Introduction 11 April 2018

9And so on...

• 1995 Pentium Pro: Conditional move instruction

• 1997 Pentium MMX: Instructions for 64 bit vectors of integers

• 1999 Pentium III: Instructions for 128 bit vectors of floats

• 2000 Pentium 4: Double precision floating point

• 2004 Pentium 4E: 64 bit, hyper-threading of 2 processes in parallel

• 2006 Core 2: Multiple cores on chip

• 2008 Core i7: 4 cores × 2 hyperthreading

• 2011 Core i7: 256 bit vector instructions

Philipp Koehn Computer Systems Fundamentals: x86 Introduction 11 April 2018

10Today: Intel Xeon Platinum 8180M

• 28 cores, 56 threads

• 2.5-3.8 GHz

• 38.5 MB Cache (L1, L2, L3)

• Can address 1.5 TB RAM

• Uses 205 Watt

• List price $13011

Philipp Koehn Computer Systems Fundamentals: x86 Introduction 11 April 2018

11

architecture

Philipp Koehn Computer Systems Fundamentals: x86 Introduction 11 April 2018

12RISC vs. CISC

• RISC = Reduced Instruction Set Computer, e.g., MIPS
– instructions follow simple pattern

– for instance: no memory lookup and ALU operation in same instruction

– allows for compact design and pipelining

12RISC vs. CISC

• RISC = Reduced Instruction Set Computer, e.g., MIPS
– instructions follow simple pattern

– for instance: no memory lookup and ALU operation in same instruction

– allows for compact design and pipelining

• CISC = Complex Instruction Set Computer, e.g., x86
– instructions of different complexity and length (1-15 bytes)

– some very complex: vector operations on floats

– complexities, but were increasingly addressed with more hardware

(Xeon E7 processors have 2.6 billion transistors)

Philipp Koehn Computer Systems Fundamentals: x86 Introduction 11 April 2018

138 Registers

• 4 general purpose registers: AX, BX, CX, DX

• Stack pointer: SP

• Base pointer: BP

• Address registers: SI, DI

138 Registers

• 4 general purpose registers: AX, BX, CX, DX

• Stack pointer: SP

• Base pointer: BP

• Address registers: SI, DI

• 8 bit registers: AH/AL, CH/CL, DH/DL, BH/BL

138 Registers

• 4 general purpose registers: AX, BX, CX, DX

• Stack pointer: SP

• Base pointer: BP

• Address registers: SI, DI

• 8 bit registers: AH/AL, CH/CL, DH/DL, BH/BL

• 32 bit registers: prefix with "E", e.g., EAX

138 Registers

• 4 general purpose registers: AX, BX, CX, DX

• Stack pointer: SP

• Base pointer: BP

• Address registers: SI, DI

• 8 bit registers: AH/AL, CH/CL, DH/DL, BH/BL

• 32 bit registers: prefix with "E", e.g., EAX

• 64 bit registers: prefix with "R", e.g., RAX

8 additional registers added (R8-R15)

138 Registers

• 4 general purpose registers: AX, BX, CX, DX

• Stack pointer: SP

• Base pointer: BP

• Address registers: SI, DI

• 8 bit registers: AH/AL, CH/CL, DH/DL, BH/BL

• 32 bit registers: prefix with "E", e.g., EAX

• 64 bit registers: prefix with "R", e.g., RAX

8 additional registers added (R8-R15)

• Additional floating point registers: ST(0)-ST(7)

Philipp Koehn Computer Systems Fundamentals: x86 Introduction 11 April 2018

14Operands

• As in 6502, operands can be registers and memory locations

• For instance addition
– add EAX, EBX xxx; add two registers

– add EAX, 42 xxxx; add value 42 to register value

– add EAX, [ff02] ; add value from memory location ff02 to register

– add [ff02], EAX ; as above, store result in memory

– add [ff02], 20 x; add 20 to value stored in memory location ff02

Philipp Koehn Computer Systems Fundamentals: x86 Introduction 11 April 2018

15Addressing Modes

• Addressing modes similar to 6502
– mov [ff02], EAXxxxx; load from address ff02

– mov [ESP], EAXxxxxx; load from address specified in register ESP

– mov [ESP+40], EAXxx; address is register value + 40

– mov [ESP+EBX], EAX ; address is sum of register values

15Addressing Modes

• Addressing modes similar to 6502
– mov [ff02], EAXxxxx; load from address ff02

– mov [ESP], EAXxxxxx; load from address specified in register ESP

– mov [ESP+40], EAXxx; address is register value + 40

– mov [ESP+EBX], EAX ; address is sum of register values

• To deal with different data sizes: scaled index

– mov [60+EDI*4], EAXxxxxxx; scale index register value

– mov [60+EDI*4+EBX], EAXxx; scale index register, add base

Philipp Koehn Computer Systems Fundamentals: x86 Introduction 11 April 2018

16Data Sizes

• Operations work on 8, 16, 32, or 64 bit data sizes

• Examples
– add AH, BLxxxxx; 8 bit

– add AX, BXxxxxx; 16 bit

– add AX, -1xxxxx; 16 bit (-1 = ffff)

16Data Sizes

• Operations work on 8, 16, 32, or 64 bit data sizes

• Examples
– add AH, BLxxxxx; 8 bit

– add AX, BXxxxxx; 16 bit

– add AX, -1xxxxx; 16 bit (-1 = ffff)

– add EAX, EBXxxx; 32 bit

– add EAX, -1xxxx; 16 bit (-1 = ffffffff)

16Data Sizes

• Operations work on 8, 16, 32, or 64 bit data sizes

• Examples
– add AH, BLxxxxx; 8 bit

– add AX, BXxxxxx; 16 bit

– add AX, -1xxxxx; 16 bit (-1 = ffff)

– add EAX, EBXxxx; 32 bit

– add EAX, -1xxxx; 16 bit (-1 = ffffffff)

– add RAX, RBXxxx; 64 bit

Philipp Koehn Computer Systems Fundamentals: x86 Introduction 11 April 2018

17Data Types

C Intel type Assembly suffix Bytes

char byte b 1

short word w 2

int double word l 4

long quad word q 8

float single precision s 4

double double precision d 8

Philipp Koehn Computer Systems Fundamentals: x86 Introduction 11 April 2018

18Status Flags

• Same kind of status flags as 6502
– CF: carry flag

– ZF: zero flag

– SF: sign flag

– OF: overflow flag

• Used in conditional branches
– jz: jump if zero

– jc: jump if carry

Philipp Koehn Computer Systems Fundamentals: x86 Introduction 11 April 2018

19

instructions

Philipp Koehn Computer Systems Fundamentals: x86 Introduction 11 April 2018

20Data Movement

• Just one command: mov

• Used for
– load

– store

– transfer between registers

– copy from memory to memory

Philipp Koehn Computer Systems Fundamentals: x86 Introduction 11 April 2018

21Stack Operations

• Basic stack operations
– push: place value on stack

– pop: retrieve value from stack

• Jumps
– call: call a subroutine (store return address on stack)

– ret: return from sub routine

Philipp Koehn Computer Systems Fundamentals: x86 Introduction 11 April 2018

22Arithmetic and Logic

• Basic math: add, sub, mul, div, neg

• Counter: inc, dec

• Boolean: and, or, xor, not

• Shift: shl, shr

Philipp Koehn Computer Systems Fundamentals: x86 Introduction 11 April 2018

23Control

• Compare two values: cmp

• Test (Boolean and): test

• Map flags to register: setz, setnz, ...

• Jump: jmp

• Branch: jz, jnz, ...

• Conditional move: cmovz, cmovnz, ...

Philipp Koehn Computer Systems Fundamentals: x86 Introduction 11 April 2018

24Code Example: Fibonacci

• Note: 32 bit indicated by

– l (long int) in instructions: movl

– extended register names: %eax, %ebx, %ecx, %edx

movl $0, %ebx ; ebx = secondlast = 1

movl $1, %eax ; eax = last = 0

loop:

cmp $0, %ecx ; %ecx is input value n

jne end ; if n != 0 loop

movl %eax, %edx ; tmp = last

add %edx, %ebx ; tmp += secondlast

movl %ebx, %eax ; shift last -> secondlast

movl %edx, %ebx ; shift tmp -> last

dec %ecx ; n = n - 1

jmp loop

end:

Philipp Koehn Computer Systems Fundamentals: x86 Introduction 11 April 2018

25Vector Operations

• 128 bit allows encoding of 4 single precision floats (32 bit each)

• Instructions that
– load vector of 4 floats into memory

– multiply each element of a vector

– store vector of 4 floats

• Example

movups %xmm0,[%ebx+%ebx] ; loads 4 floats in first register (xmm0)

movups %xmm1,[%eax+%ebx] ; loads 4 floats in second register (xmm1)

mulps %xmm0,%xmm1 ; multiplies both vector registers

movups [%eax+%ebx],%xmm0 ; write back the result to memory

Philipp Koehn Computer Systems Fundamentals: x86 Introduction 11 April 2018

