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1Control Flow

• The CPU executes one instruction after another

• Typically, they are next to each other in memory
(unless jumps, branches, and returns from subroutine)

• Exceptional Control Flow, triggered by
– hardware exception

– software exception
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2Exceptions

• Interrupts
– signal from I/O device
– also: timer interrupts for multi-tasking

• Traps and system calls
– intentional
– triggered by instruction ("syscall")

• Faults
– maybe recoverable, e.g., swapped out memory ("page fault")
– if recovered, return to regular control flow

• Aborts
– unrecoverable fatal error, e.g., memory corrupted
– application process is terminated
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3Abrupt Change in Control Flow

current
next

execute
instructions interrupt, 

finish current instruction,
 control passes to kernel

interrupt
handler

 handler returns 
to next instruction
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4

processes
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5Process

• Exceptions basic building block for processes

• Modern computers seem to run several things at once
– retrieve and display web pages

– play music in the background

– accept emails and alert you to them

• Process := a running program
– appears to have full access to memory

– appears to run without interruptions

• Multi-tasking: modern OS that allow multiple processes at once
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6Logical Control Flow

tim
e

Process A Process B Process C
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7User and Kernel Mode

• Mode bit in control register

• Kernel mode: may execute any instruction, access any memory

• User mode: limited to private memory

• Switch from user to kernel mode
– voluntary (sleep)

– triggered by interrupt

– system call
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8Private Address Space

Kernel memory

User stack

Memory-mapped region 
for shared libraries

Run time heap (created by 
malloc)

Read/write segment 
(.data / .bss)

Read-only code segment 
(.init, .text., .rodata)

Stack pointer

Loaded from
executable

0

400000

ffffffff
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9Process Context

• Kernel maintains context for each process

• Context
– program counter

– register values

– address table (more on that next lecture)

– opened files

– various meta information (e.g., process name)

• In Linux, each process context viewable in /proc "file" system
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10Context Switches

tim
e

Process A Process B Process C

user

kernel

user

kernel
user

kernel

user
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11

system calls
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12Examples

Number Name Description

0 read read from file

1 write write to file

2 open open file

3 close close file

33 pause suspend process until signal arrives

39 getpid get process id

57 fork create new process

60 exit end process

61 wait4 wait for a process to terminate

62 kill kill another process
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13Assembly Example
.section .data

string:

.ascii "hello, world!\n"

string_end:

.equ len, string_end - string

.section .text

.globl main

main:

movq $1, %rax ; write is system call 1

movq $1, %rdi ; arg1: stdout is "file" 1

movq string, %rsi ; arg2: hello world string

movq len, %rdx ; arg3: length of string

syscall

movq $60, %rax ; exit is system call 60

movq $0; %rdi ; exit status

syscall
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14System Call Control

syscall
next

execute
instructions

control passes to kernel
syscall
handler

runs handler returns 
to next instruction,

provides return values
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15

process control
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16Creating New Processes

• C code than spawns a child process

int main() {

int x = 1;

pid_t pid = fork();

if (pid == 0) {

printf("child x=%d", ++x);

exit(0);

}

printf("parent x=%d", --x);

exit(0);

}

• When run, it returns
parent x=0

child x=2
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17Syscall 57: Fork

• fork() creates a child process

• Call once, return twice
– in child process: return value 0

– in parent process: return value is process id of child

• Concurrent exception
– parent and child processes run concurrently

– no guarantee which proceeds first (and for how long)

• Duplicate by separate address space
– initially memory is identical

– each process makes changes to its private copy
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18Another Example

• Multiple forks

int main() {

fork();

fork();

printf("hello\n");

exit(0);

}

• Outputs "hello" 4 times
printf

printf

printf

printf

fork

forkfork exit

exit

exit

exit

main
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19Death in the Family

• What happens when what dies when?

• Child process dies
– process still in kernel’s process table

– waiting for parent to read exit status

– "zombie": dead, but still active

• Parent process dies
– children processes become orphaned

– orphan killing: terminate all orphaned processes

– re-parenting: make init process (pid: 1) parent

(→ a "daemon" process)
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20Waiting for Child to Die

1. Parent spawns child process

2. Both processes running

3. Parent waits for child to complete

- C: waitpid()

- Assembly: syscall 61

4. Parent stalls

5. Child dies (zombie)

6. Parent receives exit status of child

7. Child dies completely
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21Exec

• Parent process may execute another program
– C: execve(filename, argv, envp)

– Assembly: syscall 59

• Passes environment variables (envp)

• Executed command takes over

• If both should run: fork first
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22

signals
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23Signals

• Software-level communication between processes

• Sending the signal from one process

• Receiving the signal by another process
– ignore

– terminate

– catch signal

• Handled by kernel
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24Examples

Number Name Default Corresponding Event

1 SIGHUP terminate Terminate line hangup

2 SIGINT terminate Interrupt from keyboard

3 SIGUIT terminate quit from keyboard

4 SIGILL terminate illegal instruction

5 SIGTRAP terminate & dump core trace trap

9 SIGKILL terminate* kill process

18 SIGCONT ignore continue process if stopped

19 SIGSTOP stop until SIGCONT* stop signal not from terminal

20 SIGTSTP stop until SIGCONT stop signal from terminal

* = SIGKILL and SIGSTOP cannot be caught
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25Sending Signals

• From shell with command
linux> /bin/kill -9 2423

• From shell with keystroke to running process
linux> start-my-process

CTRL+C

– CTRL+C: sends SIGINT
– CTRL+Z: sends SIGTSTP

• There is also a C function and an Assembly syscall
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26Receiving Signals

• When kernel about to continue process, checks for signals

• If there is a signal, forces process to receive signal

• Each signal has a default action
– ignore

– terminate

– terminate and dump core

– stop

• Process can also set up a signal handler for customized response
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27Signal Handler

• Signal handler in C

#include "csapp.h"

void sigInt_handler(int sig) {

printf("Caught SIGINT\n");

exit(0);

}

int main() {

signal(SIGINT, sigint_handler);

pause();

return 0;

}

• Now, process writes "Caught SIGINT" to stdout before terminating
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