
Process Control

Philipp Koehn

23 April 2018

Philipp Koehn Computer Systems Fundamentals: Process Control 23 April 2018

1Control Flow

• The CPU executes one instruction after another

• Typically, they are next to each other in memory
(unless jumps, branches, and returns from subroutine)

• Exceptional Control Flow, triggered by
– hardware exception

– software exception

Philipp Koehn Computer Systems Fundamentals: Process Control 23 April 2018

2Exceptions

• Interrupts
– signal from I/O device
– also: timer interrupts for multi-tasking

2Exceptions

• Interrupts
– signal from I/O device
– also: timer interrupts for multi-tasking

• Traps and system calls
– intentional
– triggered by instruction ("syscall")

2Exceptions

• Interrupts
– signal from I/O device
– also: timer interrupts for multi-tasking

• Traps and system calls
– intentional
– triggered by instruction ("syscall")

• Faults
– maybe recoverable, e.g., swapped out memory ("page fault")
– if recovered, return to regular control flow

2Exceptions

• Interrupts
– signal from I/O device
– also: timer interrupts for multi-tasking

• Traps and system calls
– intentional
– triggered by instruction ("syscall")

• Faults
– maybe recoverable, e.g., swapped out memory ("page fault")
– if recovered, return to regular control flow

• Aborts
– unrecoverable fatal error, e.g., memory corrupted
– application process is terminated

Philipp Koehn Computer Systems Fundamentals: Process Control 23 April 2018

3Abrupt Change in Control Flow

current
next

execute
instructions interrupt,

finish current instruction,
 control passes to kernel

interrupt
handler

 handler returns
to next instruction

Philipp Koehn Computer Systems Fundamentals: Process Control 23 April 2018

4

processes

Philipp Koehn Computer Systems Fundamentals: Process Control 23 April 2018

5Process

• Exceptions basic building block for processes

• Modern computers seem to run several things at once
– retrieve and display web pages

– play music in the background

– accept emails and alert you to them

5Process

• Exceptions basic building block for processes

• Modern computers seem to run several things at once
– retrieve and display web pages

– play music in the background

– accept emails and alert you to them

• Process := a running program
– appears to have full access to memory

– appears to run without interruptions

5Process

• Exceptions basic building block for processes

• Modern computers seem to run several things at once
– retrieve and display web pages

– play music in the background

– accept emails and alert you to them

• Process := a running program
– appears to have full access to memory

– appears to run without interruptions

• Multi-tasking: modern OS that allow multiple processes at once

Philipp Koehn Computer Systems Fundamentals: Process Control 23 April 2018

6Logical Control Flow

tim
e

Process A Process B Process C

Philipp Koehn Computer Systems Fundamentals: Process Control 23 April 2018

7User and Kernel Mode

• Mode bit in control register

• Kernel mode: may execute any instruction, access any memory

• User mode: limited to private memory

• Switch from user to kernel mode
– voluntary (sleep)

– triggered by interrupt

– system call

Philipp Koehn Computer Systems Fundamentals: Process Control 23 April 2018

8Private Address Space

Kernel memory

User stack

Memory-mapped region
for shared libraries

Run time heap (created by
malloc)

Read/write segment
(.data / .bss)

Read-only code segment
(.init, .text., .rodata)

Stack pointer

Loaded from
executable

0

400000

ffffffff

Philipp Koehn Computer Systems Fundamentals: Process Control 23 April 2018

9Process Context

• Kernel maintains context for each process

• Context
– program counter

– register values

– address table (more on that next lecture)

– opened files

– various meta information (e.g., process name)

• In Linux, each process context viewable in /proc "file" system

Philipp Koehn Computer Systems Fundamentals: Process Control 23 April 2018

10Context Switches

tim
e

Process A Process B Process C

user

kernel

user

kernel
user

kernel

user

Philipp Koehn Computer Systems Fundamentals: Process Control 23 April 2018

11

system calls

Philipp Koehn Computer Systems Fundamentals: Process Control 23 April 2018

12Examples

Number Name Description

0 read read from file

1 write write to file

2 open open file

3 close close file

33 pause suspend process until signal arrives

39 getpid get process id

57 fork create new process

60 exit end process

61 wait4 wait for a process to terminate

62 kill kill another process

Philipp Koehn Computer Systems Fundamentals: Process Control 23 April 2018

13Assembly Example
.section .data

string:

.ascii "hello, world!\n"

string_end:

.equ len, string_end - string

.section .text

.globl main

main:

movq $1, %rax ; write is system call 1

movq $1, %rdi ; arg1: stdout is "file" 1

movq string, %rsi ; arg2: hello world string

movq len, %rdx ; arg3: length of string

syscall

movq $60, %rax ; exit is system call 60

movq $0; %rdi ; exit status

syscall

Philipp Koehn Computer Systems Fundamentals: Process Control 23 April 2018

14System Call Control

syscall
next

execute
instructions

control passes to kernel
syscall
handler

runs handler returns
to next instruction,

provides return values

Philipp Koehn Computer Systems Fundamentals: Process Control 23 April 2018

15

process control

Philipp Koehn Computer Systems Fundamentals: Process Control 23 April 2018

16Creating New Processes

• C code than spawns a child process

int main() {

int x = 1;

pid_t pid = fork();

if (pid == 0) {

printf("child x=%d", ++x);

exit(0);

}

printf("parent x=%d", --x);

exit(0);

}

• When run, it returns
parent x=0

child x=2

Philipp Koehn Computer Systems Fundamentals: Process Control 23 April 2018

17Syscall 57: Fork

• fork() creates a child process

• Call once, return twice
– in child process: return value 0

– in parent process: return value is process id of child

17Syscall 57: Fork

• fork() creates a child process

• Call once, return twice
– in child process: return value 0

– in parent process: return value is process id of child

• Concurrent exception
– parent and child processes run concurrently

– no guarantee which proceeds first (and for how long)

17Syscall 57: Fork

• fork() creates a child process

• Call once, return twice
– in child process: return value 0

– in parent process: return value is process id of child

• Concurrent exception
– parent and child processes run concurrently

– no guarantee which proceeds first (and for how long)

• Duplicate by separate address space
– initially memory is identical

– each process makes changes to its private copy

Philipp Koehn Computer Systems Fundamentals: Process Control 23 April 2018

18Another Example

• Multiple forks

int main() {

fork();

fork();

printf("hello\n");

exit(0);

}

18Another Example

• Multiple forks

int main() {

fork();

fork();

printf("hello\n");

exit(0);

}

• Outputs "hello" 4 times
printf

printf

printf

printf

fork

forkfork exit

exit

exit

exit

main

Philipp Koehn Computer Systems Fundamentals: Process Control 23 April 2018

19Death in the Family

• What happens when what dies when?

• Child process dies
– process still in kernel’s process table

– waiting for parent to read exit status

– "zombie": dead, but still active

• Parent process dies
– children processes become orphaned

– orphan killing: terminate all orphaned processes

– re-parenting: make init process (pid: 1) parent

(→ a "daemon" process)

Philipp Koehn Computer Systems Fundamentals: Process Control 23 April 2018

20Waiting for Child to Die

1. Parent spawns child process

2. Both processes running

3. Parent waits for child to complete

- C: waitpid()

- Assembly: syscall 61

4. Parent stalls

5. Child dies (zombie)

6. Parent receives exit status of child

7. Child dies completely

Philipp Koehn Computer Systems Fundamentals: Process Control 23 April 2018

21Exec

• Parent process may execute another program
– C: execve(filename, argv, envp)

– Assembly: syscall 59

• Passes environment variables (envp)

• Executed command takes over

• If both should run: fork first

Philipp Koehn Computer Systems Fundamentals: Process Control 23 April 2018

22

signals

Philipp Koehn Computer Systems Fundamentals: Process Control 23 April 2018

23Signals

• Software-level communication between processes

• Sending the signal from one process

• Receiving the signal by another process
– ignore

– terminate

– catch signal

• Handled by kernel

Philipp Koehn Computer Systems Fundamentals: Process Control 23 April 2018

24Examples

Number Name Default Corresponding Event

1 SIGHUP terminate Terminate line hangup

2 SIGINT terminate Interrupt from keyboard

3 SIGUIT terminate quit from keyboard

4 SIGILL terminate illegal instruction

5 SIGTRAP terminate & dump core trace trap

9 SIGKILL terminate* kill process

18 SIGCONT ignore continue process if stopped

19 SIGSTOP stop until SIGCONT* stop signal not from terminal

20 SIGTSTP stop until SIGCONT stop signal from terminal

* = SIGKILL and SIGSTOP cannot be caught

Philipp Koehn Computer Systems Fundamentals: Process Control 23 April 2018

25Sending Signals

• From shell with command
linux> /bin/kill -9 2423

• From shell with keystroke to running process
linux> start-my-process

CTRL+C

– CTRL+C: sends SIGINT
– CTRL+Z: sends SIGTSTP

• There is also a C function and an Assembly syscall

Philipp Koehn Computer Systems Fundamentals: Process Control 23 April 2018

26Receiving Signals

• When kernel about to continue process, checks for signals

• If there is a signal, forces process to receive signal

• Each signal has a default action
– ignore

– terminate

– terminate and dump core

– stop

• Process can also set up a signal handler for customized response

Philipp Koehn Computer Systems Fundamentals: Process Control 23 April 2018

27Signal Handler

• Signal handler in C

#include "csapp.h"

void sigInt_handler(int sig) {

printf("Caught SIGINT\n");

exit(0);

}

int main() {

signal(SIGINT, sigint_handler);

pause();

return 0;

}

• Now, process writes "Caught SIGINT" to stdout before terminating

Philipp Koehn Computer Systems Fundamentals: Process Control 23 April 2018

