
Virtual Memory

Philipp Koehn

25 April 2018

Philipp Koehn Computer Systems Fundamentals: Virtual Memory 25 April 2018



1Recall: Process Address Space

Kernel memory

User stack

Memory-mapped region 
for shared libraries

Run time heap (created by 
malloc)

Read/write segment 
(.data / .bss)

Read-only code segment 
(.init, .text., .rodata)

Stack pointer

Loaded from
executable

0

400000

ffffffff

Philipp Koehn Computer Systems Fundamentals: Virtual Memory 25 April 2018



2Virtual Memory

• Abstraction of physical memory

• Purpose

– appearance of more available memory than physically exists (DRAM)

– handles disk caching / loading

– insulates memory of each process

• Page table: maps from virtual address to physical addresses

• Memory management unit (MMU):
hardware implementation of address translation

Philipp Koehn Computer Systems Fundamentals: Virtual Memory 25 April 2018



3Warning

• This is going to get very complex

• Closely tied with multi-tasking (multiple processes)

• Partly managed by hardware,
partly managed by software

Philipp Koehn Computer Systems Fundamentals: Virtual Memory 25 April 2018



4

virtual addressing

Philipp Koehn Computer Systems Fundamentals: Virtual Memory 25 April 2018



5Physical Addressing

CPU
…

0:
1:
2:
3:
4:
5:
6:
7:

Physical address (PA)

Main memory

Data

CPU chip

• So far, assumed CPU addresses physical memory

Philipp Koehn Computer Systems Fundamentals: Virtual Memory 25 April 2018



6Virtual Addressing

CPU MMU
…

0:
1:
2:
3:
4:
5:
6:
7:

Address
translation

Virtual
address

(VA)

Physical
address

(PA)

CPU chip Main memory

Data

• Memory management unit (MMU): maps virtual to physical addresses

Philipp Koehn Computer Systems Fundamentals: Virtual Memory 25 April 2018



7Address Space

• Virtual memory size: N = 2n bytes, e.g., 256TB

• Physical memory size: M = 2m bytes, e.g., 16GB

• Page (block of memory): P = 2p bytes, e.g., 4KB

• A virtual address can be encoded in n bits

Philipp Koehn Computer Systems Fundamentals: Virtual Memory 25 April 2018



8

caching

Philipp Koehn Computer Systems Fundamentals: Virtual Memory 25 April 2018



9Caching... Again?

• Yes, we already discussed caching
but: for on-chip cache of DRAM memory

• Now

– caching between RAM and disk

– driven by a large virtual memory address space

– to avoid unnecessary and duplicate loading

• Jargon

– previously "block", now "page"

– now: "swapping" or "paging"

Philipp Koehn Computer Systems Fundamentals: Virtual Memory 25 April 2018



10Mapping

empty
empty

empty

empty
empty

Physical memory

unallocated
cached

uncached
cached

unallocated
uncached
cached

unallocated
unallocated

unallocated

…

0:
1:
2:
3:
4:
5:
6:
7:

Virtual memory

8:

15:

Virtual pages (VP)
stored on disk

Physical pages (PP)
cached in DRAM

Philipp Koehn Computer Systems Fundamentals: Virtual Memory 25 April 2018



11State of Virtual Memory Page

• Cached

– allocated page

– stored in physical memory

• Uncached

– allocated page

– not in physical memory

• Unallocated

– not used by virtual memory system so far

Philipp Koehn Computer Systems Fundamentals: Virtual Memory 25 April 2018



12Page Table

• Array of page table entries (PTE)

• Valid bit

– set if PTE currently maps to physical address (cached)

– not set otherwise (uncached or unallocated)

• Mapped address

– if cached: physical address in DRAM

– if not cached: physical address on disk

Philipp Koehn Computer Systems Fundamentals: Virtual Memory 25 April 2018



13Page Table

VP1
VP6
VP3
VP7

VP0
VP1
VP2
VP3

Physical memory
DRAM

null

null

0:
1:
2:
3:
4:
5:
6:
7:

Page table

Disk

0
1
0
1
0
0
1
1

VP4
VP5
VP6
VP7

Valid Address

Philipp Koehn Computer Systems Fundamentals: Virtual Memory 25 April 2018



14Page Hit

VP1
VP6
VP3
VP7

VP0
VP1
VP2
VP3

Physical memory
DRAM

null

null

0:
1:
2:
3:
4:
5:
6:
7:

Page table

Disk

0
1
0
1
0
0
1
1

VP4
VP5
VP6
VP7

Valid Address

Virtual address

Philipp Koehn Computer Systems Fundamentals: Virtual Memory 25 April 2018



15Page Fault

VP1
VP6
VP3
VP7

VP0
VP1
VP2
VP3

Physical memory
DRAM

null

null

0:
1:
2:
3:
4:
5:
6:
7:

Page table

Disk

0
1
0
1
0
0
1
1

VP4
VP5
VP6
VP7

Valid Address

Virtual address

• Valid bit = 0

• Page not in RAM

Philipp Koehn Computer Systems Fundamentals: Virtual Memory 25 April 2018



16Page Fault

VP1
VP6
VP3
VP7

VP0
VP1
VP2
VP3

Physical memory
DRAM

null

null

0:
1:
2:
3:
4:
5:
6:
7:

Page table

Disk

0
1
0
1
0
0
1
1

VP4
VP5
VP6
VP7

Valid Address

Virtual address

• Page is on disk

Philipp Koehn Computer Systems Fundamentals: Virtual Memory 25 April 2018



17Page Fault

VP1

VP3
VP7

VP0
VP1
VP2
VP3

Physical memory
DRAM

null

null

0:
1:
2:
3:
4:
5:
6:
7:

Page table

Disk

0
1
0
1
0
0
1
1

VP4
VP5
VP6
VP7

Valid Address

Virtual address

• Make space in RAM

• Pre-empt "victim" page

• Typically out-dated cached page

Philipp Koehn Computer Systems Fundamentals: Virtual Memory 25 April 2018



18Page Fault

VP1
VP2
VP3
VP7

VP0
VP1
VP2
VP3

Physical memory
DRAM

null

null

0:
1:
2:
3:
4:
5:
6:
7:

Page table

Disk

0
1
0
1
0
0
1
1

VP4
VP5
VP6
VP7

Valid Address

Virtual address

• Load page into RAM

Philipp Koehn Computer Systems Fundamentals: Virtual Memory 25 April 2018



19Page Fault

VP1
VP2
VP3
VP7

VP0
VP1
VP2
VP3

Physical memory
DRAM

null

null

0:
1:
2:
3:
4:
5:
6:
7:

Page table

Disk

0
1
1
1
0
0
1
1

VP4
VP5
VP6
VP7

Valid Address

Virtual address

• Update page table entry

Philipp Koehn Computer Systems Fundamentals: Virtual Memory 25 April 2018



20Allocating Pages

• What happens when we load a program?

• We need to load its executable into memory

• Similar: create data objects when program is running

("allocating" memory)

Philipp Koehn Computer Systems Fundamentals: Virtual Memory 25 April 2018



21Allocating Page

VP1
VP6
VP3
VP7

VP0
VP1
VP2
VP3

Physical memory
DRAM

null

null

0:
1:
2:
3:
4:
5:
6:
7:

Page table

Disk

0
1
0
1
0
0
1
1

VP4
VP5
VP6
VP7

Valid Address

• Identify space in virtual memory

Philipp Koehn Computer Systems Fundamentals: Virtual Memory 25 April 2018



22Allocating Page

VP1
VP6
VP3
VP7

VP0
VP1
VP2
VP3

Physical memory
DRAM

null0:
1:
2:
3:
4:
5:
6:
7:

Page table

Disk

0
1
0
1
0
0
1
1

VP4
VP5
VP6
VP7

Valid Address

• Map to data on disk
– do not actual load
– just create page table entries
– let virtual memory system handle loading

⇒ On-demand loading

Philipp Koehn Computer Systems Fundamentals: Virtual Memory 25 April 2018



23Process Memory

• Nothing loaded at startup

• Working set (or resident set)

– pages of a process that are currently in DRAM

– loaded by virtual memory system on demand

• Thrashing

– memory actively required by all processes
larger than physically available

– frequent swapping of memory to/from disk

– very bad: slows down machine dramatically

Philipp Koehn Computer Systems Fundamentals: Virtual Memory 25 April 2018



24

memory management

Philipp Koehn Computer Systems Fundamentals: Virtual Memory 25 April 2018



25One Page Table per Process

PP10

VP1
VP2

0:
1:
2:
3:

Process 1
0
1
1
0

VP1
VP2

0:
1:
2:
3:

Process 2
0
1
1
0

PP2

PP7

Physical memory

Shared page

Philipp Koehn Computer Systems Fundamentals: Virtual Memory 25 April 2018



26Process Address Space

Kernel memory

User stack

Memory-mapped region 
for shared libraries

Run time heap (created by 
malloc)

Read/write segment 
(.data / .bss)

Read-only code segment 
(.init, .text., .rodata)

Stack pointer

Loaded from
executable

0

400000

ffffffff

Philipp Koehn Computer Systems Fundamentals: Virtual Memory 25 April 2018



27Simplified Linking

Data
Code

400000

• Each process has its code in address 0x400000

• Easy linking: Linker can establish fixed addresses

Philipp Koehn Computer Systems Fundamentals: Virtual Memory 25 April 2018



28Simplified Loading

• When loading process into memory...

• Enter .data and .text section into page table

• Mark them as invalid (= not actually in RAM)

• Called memory mapping (more on that later)

Philipp Koehn Computer Systems Fundamentals: Virtual Memory 25 April 2018



29Simplified Sharing

Shared libraries

Shared libraries

Physical memory

• Shared libraries
used by several processes

e.g., stdio providing printf,

e.g., scanf, open, close, ...

• Not copied multiple times
into RAM

Philipp Koehn Computer Systems Fundamentals: Virtual Memory 25 April 2018



30Simplified Memory Allocation

• Process may need more memory (e.g., malloc call)

⇒ New entry in page table

• Mapped to arbitrary pages in physical memory

• Do not have to be contiguous

Philipp Koehn Computer Systems Fundamentals: Virtual Memory 25 April 2018



31Memory Protection

Physical memory

yes nono PP 6
yes yesno PP 4

VP 0
VP 1

yes yesyes PP 2VP 2

READ WRTSUP Address

yes nono PP 9
yes yesyes PP 6

VP 0
VP 1

yes yesno PP 11VP 2

READ WRTSUP Address

Process 1

Process 2

PP 0

PP 2

PP 4

PP 6

PP 9

PP 11

• Page may be kernel only: SUP=yes

• Page may be read-only (e.g., code)

Philipp Koehn Computer Systems Fundamentals: Virtual Memory 25 April 2018



32

address translation

Philipp Koehn Computer Systems Fundamentals: Virtual Memory 25 April 2018



33Address Space

• Virtual memory size: N = 2n bytes

• Physical memory size: M = 2m bytes

• Page (block of memory): P = 2p bytes

• A virtual address can be encoded in n bits

Philipp Koehn Computer Systems Fundamentals: Virtual Memory 25 April 2018



34Address Translation

• Task: mapping virtual address to physical address

– virtual address (VA): used by machine code instructions

– physical address (PA): location in RAM

• Formally
MAP: VA → PA ∪ 0

where:
MAP(A) = PA if in RAM

xxxxx = 0 otherwise

• Note: this happens very frequently in machine code

• We will do this in hardware: Memory Management Unit (MMU)

Philipp Koehn Computer Systems Fundamentals: Virtual Memory 25 April 2018



35Basic Architecture

page table 
base register

Virtual address

Physical address

Philipp Koehn Computer Systems Fundamentals: Virtual Memory 25 April 2018



36Basic Architecture

page table 
base register

Valid Physical page number

Virtual address

Physical address

Philipp Koehn Computer Systems Fundamentals: Virtual Memory 25 April 2018



37Basic Architecture

page table 
base register

virtual page number page offset

physical page number page offset

Valid Physical page number

Virtual address

Physical address

Philipp Koehn Computer Systems Fundamentals: Virtual Memory 25 April 2018



38Basic Architecture

page table 
base register

virtual page number page offset

physical page number page offset

Valid Physical page number

valid = 0?
-> page fault

Virtual address

Physical address

Philipp Koehn Computer Systems Fundamentals: Virtual Memory 25 April 2018


