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1Recall: Process Address Space

Kernel memory

User stack

Memory-mapped region 
for shared libraries

Run time heap (created by 
malloc)

Read/write segment 
(.data / .bss)

Read-only code segment 
(.init, .text., .rodata)

Stack pointer

Loaded from
executable

0

400000

ffffffff
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2Virtual Memory

• Abstraction of physical memory

• Purpose

– appearance of more available memory than physically exists (DRAM)

– handles disk caching / loading

– insulates memory of each process

• Page table: maps from virtual address to physical addresses

• Memory management unit (MMU):
hardware implementation of address translation
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3Warning

• This is going to get very complex

• Closely tied with multi-tasking (multiple processes)

• Partly managed by hardware,
partly managed by software
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4

virtual addressing
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5Physical Addressing

CPU
…

0:
1:
2:
3:
4:
5:
6:
7:

Physical address (PA)

Main memory

Data

CPU chip

• So far, assumed CPU addresses physical memory
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6Virtual Addressing

CPU MMU
…

0:
1:
2:
3:
4:
5:
6:
7:

Address
translation

Virtual
address

(VA)

Physical
address

(PA)

CPU chip Main memory

Data

• Memory management unit (MMU): maps virtual to physical addresses
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7Address Space

• Virtual memory size: N = 2n bytes, e.g., 256TB

• Physical memory size: M = 2m bytes, e.g., 16GB

• Page (block of memory): P = 2p bytes, e.g., 4KB

• A virtual address can be encoded in n bits
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8

caching
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9Caching... Again?

• Yes, we already discussed caching
but: for on-chip cache of DRAM memory

• Now

– caching between RAM and disk

– driven by a large virtual memory address space

– to avoid unnecessary and duplicate loading

• Jargon

– previously "block", now "page"

– now: "swapping" or "paging"
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10Mapping

empty
empty

empty

empty
empty

Physical memory

unallocated
cached

uncached
cached

unallocated
uncached
cached

unallocated
unallocated

unallocated

…

0:
1:
2:
3:
4:
5:
6:
7:

Virtual memory

8:

15:

Virtual pages (VP)
stored on disk

Physical pages (PP)
cached in DRAM
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11State of Virtual Memory Page

• Cached

– allocated page

– stored in physical memory

• Uncached

– allocated page

– not in physical memory

• Unallocated

– not used by virtual memory system so far
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12Page Table

• Array of page table entries (PTE)

• Valid bit

– set if PTE currently maps to physical address (cached)

– not set otherwise (uncached or unallocated)

• Mapped address

– if cached: physical address in DRAM

– if not cached: physical address on disk
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13Page Table

VP1
VP6
VP3
VP7

VP0
VP1
VP2
VP3

Physical memory
DRAM

null

null

0:
1:
2:
3:
4:
5:
6:
7:

Page table

Disk

0
1
0
1
0
0
1
1

VP4
VP5
VP6
VP7

Valid Address
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14Page Hit

VP1
VP6
VP3
VP7

VP0
VP1
VP2
VP3

Physical memory
DRAM

null

null

0:
1:
2:
3:
4:
5:
6:
7:

Page table

Disk

0
1
0
1
0
0
1
1

VP4
VP5
VP6
VP7

Valid Address

Virtual address
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15Page Fault

VP1
VP6
VP3
VP7

VP0
VP1
VP2
VP3

Physical memory
DRAM

null

null

0:
1:
2:
3:
4:
5:
6:
7:

Page table

Disk

0
1
0
1
0
0
1
1

VP4
VP5
VP6
VP7

Valid Address

Virtual address

• Valid bit = 0

• Page not in RAM
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16Page Fault

VP1
VP6
VP3
VP7

VP0
VP1
VP2
VP3

Physical memory
DRAM

null

null

0:
1:
2:
3:
4:
5:
6:
7:

Page table

Disk

0
1
0
1
0
0
1
1

VP4
VP5
VP6
VP7

Valid Address

Virtual address

• Page is on disk
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17Page Fault

VP1

VP3
VP7

VP0
VP1
VP2
VP3

Physical memory
DRAM

null

null

0:
1:
2:
3:
4:
5:
6:
7:

Page table

Disk

0
1
0
1
0
0
1
1

VP4
VP5
VP6
VP7

Valid Address

Virtual address

• Make space in RAM

• Pre-empt "victim" page

• Typically out-dated cached page
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18Page Fault

VP1
VP2
VP3
VP7

VP0
VP1
VP2
VP3

Physical memory
DRAM

null

null

0:
1:
2:
3:
4:
5:
6:
7:

Page table

Disk

0
1
0
1
0
0
1
1

VP4
VP5
VP6
VP7

Valid Address

Virtual address

• Load page into RAM
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19Page Fault

VP1
VP2
VP3
VP7

VP0
VP1
VP2
VP3

Physical memory
DRAM

null

null

0:
1:
2:
3:
4:
5:
6:
7:

Page table

Disk

0
1
1
1
0
0
1
1

VP4
VP5
VP6
VP7

Valid Address

Virtual address

• Update page table entry
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20Allocating Pages

• What happens when we load a program?

• We need to load its executable into memory

• Similar: create data objects when program is running

("allocating" memory)
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21Allocating Page

VP1
VP6
VP3
VP7

VP0
VP1
VP2
VP3

Physical memory
DRAM

null

null

0:
1:
2:
3:
4:
5:
6:
7:

Page table

Disk

0
1
0
1
0
0
1
1

VP4
VP5
VP6
VP7

Valid Address

• Identify space in virtual memory
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22Allocating Page

VP1
VP6
VP3
VP7

VP0
VP1
VP2
VP3

Physical memory
DRAM

null0:
1:
2:
3:
4:
5:
6:
7:

Page table

Disk

0
1
0
1
0
0
1
1

VP4
VP5
VP6
VP7

Valid Address

• Map to data on disk
– do not actual load
– just create page table entries
– let virtual memory system handle loading

⇒ On-demand loading
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23Process Memory

• Nothing loaded at startup

• Working set (or resident set)

– pages of a process that are currently in DRAM

– loaded by virtual memory system on demand

• Thrashing

– memory actively required by all processes
larger than physically available

– frequent swapping of memory to/from disk

– very bad: slows down machine dramatically
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24

memory management
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25One Page Table per Process

PP10

VP1
VP2

0:
1:
2:
3:

Process 1
0
1
1
0

VP1
VP2

0:
1:
2:
3:

Process 2
0
1
1
0

PP2

PP7

Physical memory

Shared page
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26Process Address Space

Kernel memory

User stack

Memory-mapped region 
for shared libraries

Run time heap (created by 
malloc)

Read/write segment 
(.data / .bss)

Read-only code segment 
(.init, .text., .rodata)

Stack pointer

Loaded from
executable

0

400000

ffffffff
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27Simplified Linking

Data
Code

400000

• Each process has its code in address 0x400000

• Easy linking: Linker can establish fixed addresses

Philipp Koehn Computer Systems Fundamentals: Virtual Memory 25 April 2018



28Simplified Loading

• When loading process into memory...

• Enter .data and .text section into page table

• Mark them as invalid (= not actually in RAM)

• Called memory mapping (more on that later)
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29Simplified Sharing

Shared libraries

Shared libraries

Physical memory

• Shared libraries
used by several processes

e.g., stdio providing printf,

e.g., scanf, open, close, ...

• Not copied multiple times
into RAM
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30Simplified Memory Allocation

• Process may need more memory (e.g., malloc call)

⇒ New entry in page table

• Mapped to arbitrary pages in physical memory

• Do not have to be contiguous
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31Memory Protection

Physical memory

yes nono PP 6
yes yesno PP 4

VP 0
VP 1

yes yesyes PP 2VP 2

READ WRTSUP Address

yes nono PP 9
yes yesyes PP 6

VP 0
VP 1

yes yesno PP 11VP 2

READ WRTSUP Address

Process 1

Process 2

PP 0

PP 2

PP 4

PP 6

PP 9

PP 11

• Page may be kernel only: SUP=yes

• Page may be read-only (e.g., code)
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32

address translation
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33Address Space

• Virtual memory size: N = 2n bytes

• Physical memory size: M = 2m bytes

• Page (block of memory): P = 2p bytes

• A virtual address can be encoded in n bits
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34Address Translation

• Task: mapping virtual address to physical address

– virtual address (VA): used by machine code instructions

– physical address (PA): location in RAM

• Formally
MAP: VA → PA ∪ 0

where:
MAP(A) = PA if in RAM

xxxxx = 0 otherwise

• Note: this happens very frequently in machine code

• We will do this in hardware: Memory Management Unit (MMU)
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35Basic Architecture

page table 
base register

Virtual address

Physical address
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36Basic Architecture

page table 
base register

Valid Physical page number

Virtual address

Physical address
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37Basic Architecture

page table 
base register

virtual page number page offset

physical page number page offset

Valid Physical page number

Virtual address

Physical address
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38Basic Architecture

page table 
base register

virtual page number page offset

physical page number page offset

Valid Physical page number

valid = 0?
-> page fault

Virtual address

Physical address
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