Network communication

David Hovemeyer

15 November 2019

David Hovemeyer

Computer Systems Fundamentals: Network communication

15 November 2019

[

Using a web browser 1

L)
~=

Type a URL into a web browser:

http://placekitten.com/1024/768

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

The internet of cats QY

| 5 768(1024x768) x| + ‘

€ > C @ © Notsecure| placekitten.com/1024/768 % @ m| @

% Apps Bm Academic BB Fun [Personal | Bm Tech Bm Imported W PietMondriaan, 19.. B A fork()inthe road

Nice! (But how did that actually work?)

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

[

Networks

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

)

Networks 4

<

Network: allow communication between computers

Access remote data

Share information

Hard to overstate importance of networking: everything can

communicate over the Internet now (laptops, phones, cars,
refrigerators, ...)

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

Network interface QY

To connect to a network, a computing device needs a network interface

e Wired: ethernet, Infiniband (for high-performance applications)

e Wireless: 802.11 (wifi), cellular modem

To the computing device (the ‘‘host’’), the network interface 1is
just a peripheral device

e Much like a disk controller, USB controller, etc.

OS can request to send data out to the network

Network interface device notifies host CPU when data arrives
from the network (possibly by raising a hardware interrupt)

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

[

Network interface example o QY

CPU RAM

bus
USB disk 802.11 ethernet
controller controller interface interface

I

ethernet
network

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

Protocol stack

)

In addition to network interface hardware, a protocol stack 1is
needed to allow network applications to communicate over the
attached network interface(s)

‘‘Protocol stack’’:

application protocol (e.g., HTTP)

messages

transport protocol (e.g., TCP)

packets

network protocol (e.qg., IP)

datagrams

link layer protocol (e.g., ethernet)

frames

physical layer protocol (e.g., ethernet
over CAT6 twisted pair)

signals

so called because network protocols are layered

David Hovemeyer

Computer Systems Fundamentals: Network communication

15 November 2019

)

Issues 8

<

Some 1mportant issues to consider:

e How are differing network technologies interfaced to each other?
e How are devices and systems identified on the network?
e How 1s data routed to the correct destination?

e What APIs do network applications use to communicate?

We’ll cover all of these (at least briefly)

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

)

Network security 9

o

Ideal of networking is to provide access to information and
computing resources from anywhere

But...connecting a computing device to the network potentially
exposes 1t to malicious actors

Issue: controlling access
e Permit only authorized agents access to data and services

When implementing and deploying networked systems and applications,
we must think very carefully about

e what the security requirements are, and

e whether the system meets them

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

TCP/IP

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

TCP/IP n @

TCP/IP: a suite of internetworking protocols

e ‘‘internetworking’’ = connecting lots of physical networks together,
including when they use different technologies or protocols

Two versions: IPv4 and IPvG6

e TPv4d: 32 bit addresses (not enough of these!), widely deployed

e TPv6: 128 bit addresses, not as widely deployed (but significant
adoption 1n mobile networks)

Ubiquitous: 1f you’re using a network, you’re using TCP/IP

Scale of global TCP/IP internet is immense (billions of communicating
devices)

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

IP 2 Q!

IP = Internet Protocol
This i1s the underlying network protocol in the TCP/IP protocol suite

Ultimately, all data i1s sent and received using IP datagrams:
fixed-size packets of data sent and received using IP addresses
to indicate the source and destination

Transport protocols (such as TCP and UDP) are layered on top of IP

e E.g., a TCP connection consists of IP datagrams containing TCP data

IP 1s an unreliable protocol: when a datagram is sent, it might not
reach the recipient (we’ll see why 1n a bit)

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

An IP datagram 5 QY

0 4 8 16 19 31 bit #
4 YERS | LEN |Type of Service Total Length
Identification Flags Fragment Offset
20 TTL Protocol Header checksum
bytes
source IP address
v destination IP address
Options S padding

data

[Image source: http://www.danzig.us/tcp-ip-lab/ibm-tutorial/3376c23.html]

Details:

e Consists of header followed by data
e May be fragmented and reassembled

e Protocol field indicates which transport protocol is being used

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

TCP 1+ Q!

TCP: Transmission Control Protocol
A connection protocol layed on IP (value in Protocol field is 6)

TCP allows the creation of virtual connections between peer systems on
network

A connection 1s a bidirectional data stream (each peer can send data to
the other)

Data 1s guaranteed to be delivered in the order sent
Connection can be closed (analogy: hanging up when phone call ends)

TCP is a reliable protocol: if any data is lost en route, it 1is
automatically resent

e Much cleverness 1s required to make this work!

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

UDP 15 Q!
UDP: User Datagram Protocol
A datagram protocol layed on IP (value in Protocol fields is 17)
Not connection-oriented: data could be received in any order,
no fixed duration of conversation (more analogous to sending
a letter than talking on the phone)

Unreliable: data sent might not be received

Used in applications where minimizing latency is important and
data loss can be tolerated

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

Routing: idealized o GV
Routing: How does data get to its destination?

Idealized view: [

- v
web database of
server cat pictures

user

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

Routing: the reality v QY
Routing: How does data get to its destination?

Slightly more realistic view: |

gateway carrier gateway
router network router
network load
balancer

router

() '
<« — > .
= [= 0 9
\ L
' wifi access ethernet
user point switch web database of

server cat pictures

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

Addressing i G

Two kinds of address:

e Network address: address of a network interface within the
overall internet (e.g.: IPv4 address)

e Hardware address: a hardware-level address of a network interface
(e.g.: ethernet MAC address)

Network address is used to make routing decisions at the scale of
the overall internet

e Network address conveys information about the network on which
the interface can be found

e A router makes routing decisions based on a network address

Hardware address is used to deliver a data packet to a destination
within the local network

e A switch makes routing decisions based on a hardware address

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

Routing 10 QY

104.28.28.23

128.220.224.100

Network with client, server, and intermediate routers

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

Routing 0 QW

104.28.28.23

GET /catpicture.jpg

128.220.224.100

Client sends request to server: packet sent on default route
(user’s computer has only one network interface)

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

Routing QY

104.28.28.23

GET /catpicture.jpg

128.220.224.100

Router has a choice of outgoing links on which to send the packet

Each router has a routing table specifying which link to use based
on matching the network part of the destination address

Routing algorithms: +try to deliver packets efficiently, and avoid
routing loops

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

Routing 2 QW

104.28.28.23

GET /catpicture.jpg

128.220.224.100

Choose outgoing link based on routing table

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

Routing 5 QY

104.28.28.23

128.220.224.100

Next hop

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

Routing 2 QY

-~ eie

>y

_ .9
=
- o
104.28.28.23

i [ole] #
~ GET /catplctur.g -4
[™ ey / —
\ .\{ u",
=

T
™ My

———

e

128.220.224.100

Final hop

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

Routing 5 QY

GET /catpicture.jpg

104.28.28.23

128.220.224.100

Packet delivered to server

Server’s response will be delivered back to client in a similar
manner

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

[

Why IP is unreliable 2 @V

A

Scenario: A and B both try to send a packet to D at the same time

Outgoing link C—D can only carry one of the two packets

What to do?

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

Why IP is unreliable o QY

A

Solution: queuing
Router C has a queue of unsent packets to be forwarded to D

Either A’s packet or B’s packet will need to wait in the queue

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

unreliable =\

10 MB/s

10 MB/s

Problem: outgoing link C—D cannot handle aggregate data rate
of incoming data from A—C and B—C

But, C’s queue of packets waiting to be sent to D is finite!
(An unbounded queue would imply unbounded delay, not good)

Solution: C discards packets to D when its queue is full

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

Dropped packets » Q

Dropped packets are a necessary consequence of finite capacity
links and finite queues

Reliable protocols such as TCP require acknowledgment of data sent

No acknowledgment — assume packet dropped, retransmit

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

Unix sockets

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

Unix sockets 5

Unix sockets: API to allow programs to communicate over networks
Designed to work with many underlying protocols

Socket = ‘‘communications endpoint’’, appears to process as a
file descriptor

Several important kinds of sockets:

e Server socket: wused by server to accept connections from clients
(not used for actual exchange of data)

e Client socket: used to exchange data between client
and server systems

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

Socket system calls 2 Q)

Important socket system calls:
socket: create an unconnected socket

bind: associate a socket with a network interface identified by
a network address

listen: make a socket a server socket (to allow incoming connections)
accept: wait for an incoming connection

connect: 1nitiate a connection to a remote system

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

Socket addresses 5 QY

Socket API designed to work with many underlying network technologies

struct sockaddr: ‘‘supertype’’ for all network addresses

e A ‘“type’’ field is at beginning of struct to distinguish variants

e E.g. 1if type field contains AF_INET, it’s an IP address

struct sockaddr_in: ‘‘subtype’’ for IP addresses

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

Create server socket 34 i'

int create_server_socket(int port) {
struct sockaddr_in serveraddr = {0};
int ssock_fd = socket (AF_INET, SOCK_STREAM, 0);
if (ssock_£fd < 0)
fatal ("socket failed");

serveraddr.sin_family = AF_INET;
serveraddr.sin_addr.s_addr = htonl (INADDR_ANY);
serveraddr.sin_port = htons((unsigned short)port);
if (bind(ssock_fd, (struct sockaddr *) &serveraddr,
sizeof(serveraddr)) < 0)

fatal ("bind failed");
if (listen(ssock_fd, 5) < 0) fatal("listen failed");

return ssock_fd;

}

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

Wait for incoming connection » QY

int accept_connection(int ssock_fd, struct sockaddr_in clientaddr) {
unsigned clientlen = sizeof(clientaddr);
int childfd = accept(ssock_£d,
(struct sockaddr *) &clientaddr,
&clientlen);
if (childfd < 0©)
fatal("accept failed");
return childfd;

}

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

Server loop 5 Q)

int main(int argc, char **argv) {
char buf[256];
int port = atoi(argvl[1l]);
int ssock_fd = create_server_socket(port);

while (1) {
struct sockaddr_in clientaddr;
int clientfd = accept_connection(ssock_£fd, &clientaddr);
ssize_t rc = read(clientfd, buf, sizeof(buf));
if (rc¢ > 0) {
write(clientfd, buf, rc);

}
close(clientfd);

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

Testing the server 7 Q)

Run the server:

$ gcc -Wall -o server server.c
$§ ./server 30000

Test using telnet program:

$ telnet localhost 30000
Trying 127.0.0.1...
Connected to localhost.
Escape character is '"]°’.
hey there!

hey there!
Connection closed by foreign host.

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

Implementation issues = Q

e Reading from socket can return fewer bytes than requested
(generally need to call read in a loop)

e Network connections can be broken (need to check
result of read and write, error often indicates
that the connection no longer exists)

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

Hostnames 39 i'

DNS: Domain Name Service

Assign meaningful names (such as ugradx.cs.jhu.edu) to network
addresses (such as 128.220.224.100)

getaddrinfo: 1look up network address for hostname

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

csapp.h/csapp.c o Q'

The textbook Computer Systems: A Programmer’s Perspective
includes a library of convenient functions for writing network
applications

Open_listenfd: open a server socket given port name as string

open_clientfd: simplified interface for connecting to a server
by specifying host name (or address) and port

rio_ functions: Robust I/O routines, handle looping for short
reads/writes and interruptions from signals automatically

e Example: rio_readn: read n bytes from a file descriptor

Using these routines can significantly reduce the complexity of
implementing network applications in C and C++

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

Application protocols

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

Application protocols » Q'

Application protocol: determines how data i1s exchanged by
instances of an application program

e Usually: a server and a client

e Another possibility: peer to peer (P2P) applications

Example: HTTP, HyperText Transport Protocol

e Used by web browsers and web servers

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

Application protocols in 1 minute 13 i'

Synchronous: The connected peers take turns talking

e Asynchronous protocols: possible, but significantly more
complicated to implement

Client/server protocol: client sends request, server sends response

e Repeat as necessary

Message format: both peers must be able to determine where each
message starts and ends

e Also, each peer must be able to determine the meaning of
each received message

Text-based protocols are common because they are easy to debug and
reason about

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

HTTP 44 il

A synchronous client/server protocol used by web browsers,
web servers, web clients, and web services

e HTTP 1.1: https://tools.ietf.org/html/rfc2616

Client sends request to server, server sends back a response

e FEach client request specifies a verb (GET, POST, PUT, etc.)
and the name of a resource

Requests and responses may have a body containing data

e The body’s content type specifies what kind of data the body
contains

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

HTTP request example s Q

Command: curl -v http://placekitten.com/1024/768 -0 kitten. jpg

Request sent by curl program:

GET /1024/768 HTTP/1.1
Host: placekitten.com
User-Agent: curl/7.58.0
Accept: */*

Request 1s sent via a TCP connection to port 80

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

HTTP response example o Q

Response sent by placekitten.com:

HTTP/1.1 200 OK

Date: Wed, 13 Nov 2019 12:33:20 GMT
Content-Type: image/jpegd
Transfer-Encoding: chunked

Connection: keep-alive

Set-Cookie: __cfduid=de2a22cdd3ed939398e0a56f41ce®e4a31573648400; exp]
Access-Control-Allow-Origin: *
Cache-Control: public, max-age=86400
Expires: Thu, 31 Dec 2020 20:00:00 GMT
CF-Cache-Status: HIT

Age: 51062

Server: cloudflare

CF-RAY: 5350¢c608682a957e-IAD

Headers were followed by a body containing 40,473 bytes of binary data

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

