
Network communication

David Hovemeyer

15 November 2019

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

1Using a web browser

Type a URL into a web browser:

http://placekitten.com/1024/768

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

2The internet of cats

Nice! (But how did that actually work?)

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

3

Networks

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

4Networks

Network: allow communication between computers

Access remote data

Share information

Hard to overstate importance of networking: everything can

communicate over the Internet now (laptops, phones, cars,

refrigerators, ...)

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

5Network interface

To connect to a network, a computing device needs a network interface

• Wired: ethernet, Infiniband (for high-performance applications)

• Wireless: 802.11 (wifi), cellular modem

To the computing device (the ‘‘host’’), the network interface is

just a peripheral device

• Much like a disk controller, USB controller, etc.

OS can request to send data out to the network

Network interface device notifies host CPU when data arrives

from the network (possibly by raising a hardware interrupt)

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

6Network interface example

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

7Protocol stack

In addition to network interface hardware, a protocol stack is

needed to allow network applications to communicate over the

attached network interface(s)

‘‘Protocol stack’’: so called because network protocols are layered

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

8Issues

Some important issues to consider:

• How are differing network technologies interfaced to each other?

• How are devices and systems identified on the network?

• How is data routed to the correct destination?

• What APIs do network applications use to communicate?

We’ll cover all of these (at least briefly)

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

9Network security

Ideal of networking is to provide access to information and

computing resources from anywhere

But...connecting a computing device to the network potentially

exposes it to malicious actors

Issue: controlling access

• Permit only authorized agents access to data and services

When implementing and deploying networked systems and applications,

we must think very carefully about

• what the security requirements are, and

• whether the system meets them

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

10

TCP/IP

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

11TCP/IP

TCP/IP: a suite of internetworking protocols

• ‘‘internetworking’’ = connecting lots of physical networks together,
including when they use different technologies or protocols

Two versions: IPv4 and IPv6

• IPv4: 32 bit addresses (not enough of these!), widely deployed

• IPv6: 128 bit addresses, not as widely deployed (but significant

adoption in mobile networks)

Ubiquitous: if you’re using a network, you’re using TCP/IP

Scale of global TCP/IP internet is immense (billions of communicating

devices)

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

12IP

IP = Internet Protocol

This is the underlying network protocol in the TCP/IP protocol suite

Ultimately, all data is sent and received using IP datagrams:

fixed-size packets of data sent and received using IP addresses

to indicate the source and destination

Transport protocols (such as TCP and UDP) are layered on top of IP

• E.g., a TCP connection consists of IP datagrams containing TCP data

IP is an unreliable protocol: when a datagram is sent, it might not

reach the recipient (we’ll see why in a bit)

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

13An IP datagram

[Image source: http://www.danzig.us/tcp-ip-lab/ibm-tutorial/3376c23.html]

Details:

• Consists of header followed by data

• May be fragmented and reassembled

• Protocol field indicates which transport protocol is being used

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

14TCP

TCP: Transmission Control Protocol

A connection protocol layed on IP (value in Protocol field is 6)

TCP allows the creation of virtual connections between peer systems on

network

A connection is a bidirectional data stream (each peer can send data to

the other)

Data is guaranteed to be delivered in the order sent

Connection can be closed (analogy: hanging up when phone call ends)

TCP is a reliable protocol: if any data is lost en route, it is

automatically resent

• Much cleverness is required to make this work!

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

15UDP

UDP: User Datagram Protocol

A datagram protocol layed on IP (value in Protocol fields is 17)

Not connection-oriented: data could be received in any order,

no fixed duration of conversation (more analogous to sending

a letter than talking on the phone)

Unreliable: data sent might not be received

Used in applications where minimizing latency is important and

data loss can be tolerated

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

16Routing: idealized

Routing: How does data get to its destination?

Idealized view:

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

17Routing: the reality

Routing: How does data get to its destination?

Slightly more realistic view:

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

18Addressing

Two kinds of address:

• Network address: address of a network interface within the

overall internet (e.g.: IPv4 address)

• Hardware address: a hardware-level address of a network interface

(e.g.: ethernet MAC address)

Network address is used to make routing decisions at the scale of

the overall internet

• Network address conveys information about the network on which
the interface can be found

• A router makes routing decisions based on a network address

Hardware address is used to deliver a data packet to a destination

within the local network

• A switch makes routing decisions based on a hardware address

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

19Routing

Network with client, server, and intermediate routers

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

20Routing

Client sends request to server: packet sent on default route

(user’s computer has only one network interface)

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

21Routing

Router has a choice of outgoing links on which to send the packet

Each router has a routing table specifying which link to use based

on matching the network part of the destination address

Routing algorithms: try to deliver packets efficiently, and avoid

routing loops

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

22Routing

Choose outgoing link based on routing table

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

23Routing

Next hop

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

24Routing

Final hop

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

25Routing

Packet delivered to server

Server’s response will be delivered back to client in a similar

manner

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

26Why IP is unreliable

Scenario: A and B both try to send a packet to D at the same time

Outgoing link C→D can only carry one of the two packets

What to do?

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

27Why IP is unreliable

Solution: queuing

Router C has a queue of unsent packets to be forwarded to D

Either A’s packet or B’s packet will need to wait in the queue

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

28Why IP is unreliable

Problem: outgoing link C→D cannot handle aggregate data rate
of incoming data from A→C and B→C
But, C’s queue of packets waiting to be sent to D is finite!

(An unbounded queue would imply unbounded delay, not good)

Solution: C discards packets to D when its queue is full

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

29Dropped packets

Dropped packets are a necessary consequence of finite capacity

links and finite queues

Reliable protocols such as TCP require acknowledgment of data sent

No acknowledgment → assume packet dropped, retransmit

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

30

Unix sockets

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

31Unix sockets

Unix sockets: API to allow programs to communicate over networks

Designed to work with many underlying protocols

Socket = ‘‘communications endpoint’’, appears to process as a

file descriptor

Several important kinds of sockets:

• Server socket: used by server to accept connections from clients

(not used for actual exchange of data)

• Client socket: used to exchange data between client

and server systems

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

32Socket system calls

Important socket system calls:

socket: create an unconnected socket

bind: associate a socket with a network interface identified by

a network address

listen: make a socket a server socket (to allow incoming connections)

accept: wait for an incoming connection

connect: initiate a connection to a remote system

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

33Socket addresses

Socket API designed to work with many underlying network technologies

struct sockaddr: ‘‘supertype’’ for all network addresses

• A ‘‘type’’ field is at beginning of struct to distinguish variants

• E.g. if type field contains AF INET, it’s an IP address

struct sockaddr in: ‘‘subtype’’ for IP addresses

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

34Create server socket

int create_server_socket(int port) {

struct sockaddr_in serveraddr = {0};

int ssock_fd = socket(AF_INET, SOCK_STREAM, 0);

if (ssock_fd < 0)

fatal("socket failed");

serveraddr.sin_family = AF_INET;

serveraddr.sin_addr.s_addr = htonl(INADDR_ANY);

serveraddr.sin_port = htons((unsigned short)port);

if (bind(ssock_fd, (struct sockaddr *) &serveraddr,

sizeof(serveraddr)) < 0)

fatal("bind failed");

if (listen(ssock_fd, 5) < 0) fatal("listen failed");

return ssock_fd;

}

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

35Wait for incoming connection

int accept_connection(int ssock_fd, struct sockaddr_in clientaddr) {

unsigned clientlen = sizeof(clientaddr);

int childfd = accept(ssock_fd,

(struct sockaddr *) &clientaddr,

&clientlen);

if (childfd < 0)

fatal("accept failed");

return childfd;

}

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

36Server loop

int main(int argc, char **argv) {

char buf[256];

int port = atoi(argv[1]);

int ssock_fd = create_server_socket(port);

while (1) {

struct sockaddr_in clientaddr;

int clientfd = accept_connection(ssock_fd, &clientaddr);

ssize_t rc = read(clientfd, buf, sizeof(buf));

if (rc > 0) {

write(clientfd, buf, rc);

}

close(clientfd);

}

}

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

37Testing the server

Run the server:

$ gcc -Wall -o server server.c

$./server 30000

Test using telnet program:

$ telnet localhost 30000

Trying 127.0.0.1...

Connected to localhost.

Escape character is ’ˆ]’.

hey there!

hey there!

Connection closed by foreign host.

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

38Implementation issues

• Reading from socket can return fewer bytes than requested
(generally need to call read in a loop)

• Network connections can be broken (need to check
result of read and write, error often indicates

that the connection no longer exists)

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

39Hostnames

DNS: Domain Name Service

Assign meaningful names (such as ugradx.cs.jhu.edu) to network

addresses (such as 128.220.224.100)

getaddrinfo: look up network address for hostname

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

40csapp.h/csapp.c

The textbook Computer Systems: A Programmer’s Perspective

includes a library of convenient functions for writing network

applications

Open listenfd: open a server socket given port name as string

open clientfd: simplified interface for connecting to a server

by specifying host name (or address) and port

rio functions: Robust I/O routines, handle looping for short

reads/writes and interruptions from signals automatically

• Example: rio readn: read n bytes from a file descriptor

Using these routines can significantly reduce the complexity of

implementing network applications in C and C++

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

41

Application protocols

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

42Application protocols

Application protocol: determines how data is exchanged by

instances of an application program

• Usually: a server and a client

• Another possibility: peer to peer (P2P) applications

Example: HTTP, HyperText Transport Protocol

• Used by web browsers and web servers

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

43Application protocols in 1 minute

Synchronous: The connected peers take turns talking

• Asynchronous protocols: possible, but significantly more

complicated to implement

Client/server protocol: client sends request, server sends response

• Repeat as necessary

Message format: both peers must be able to determine where each

message starts and ends

• Also, each peer must be able to determine the meaning of
each received message

Text-based protocols are common because they are easy to debug and

reason about

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

44HTTP

A synchronous client/server protocol used by web browsers,

web servers, web clients, and web services

• HTTP 1.1: https://tools.ietf.org/html/rfc2616

Client sends request to server, server sends back a response

• Each client request specifies a verb (GET, POST, PUT, etc.)
and the name of a resource

Requests and responses may have a body containing data

• The body’s content type specifies what kind of data the body
contains

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

45HTTP request example

Command: curl -v http://placekitten.com/1024/768 -o kitten.jpg

Request sent by curl program:

GET /1024/768 HTTP/1.1

Host: placekitten.com

User-Agent: curl/7.58.0

Accept: */*

Request is sent via a TCP connection to port 80

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

46HTTP response example

Response sent by placekitten.com:

HTTP/1.1 200 OK

Date: Wed, 13 Nov 2019 12:33:20 GMT

Content-Type: image/jpeg

Transfer-Encoding: chunked

Connection: keep-alive

Set-Cookie: __cfduid=de2a22cdd3ed939398e0a56f41ce0e4a31573648400; expires=Thu, 12-Nov-20 12:33:20 GMT; path=/; domain=.placekitten.com; HttpOnly

Access-Control-Allow-Origin: *

Cache-Control: public, max-age=86400

Expires: Thu, 31 Dec 2020 20:00:00 GMT

CF-Cache-Status: HIT

Age: 51062

Server: cloudflare

CF-RAY: 5350c608682a957e-IAD

Headers were followed by a body containing 40,473 bytes of binary data

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

47Kitten

David Hovemeyer Computer Systems Fundamentals: Network communication 15 November 2019

