
Concurrency with pthreads

David Hovemeyer

22 November 2019

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

1Concurrency using processes

Processes created with fork can be used for concurrency, but

processes are a heavyweight abstraction requiring significant

resources:

They require:

1Concurrency using processes

Processes created with fork can be used for concurrency, but

processes are a heavyweight abstraction requiring significant

resources:

They require:

• Address space data structures

1Concurrency using processes

Processes created with fork can be used for concurrency, but

processes are a heavyweight abstraction requiring significant

resources:

They require:

• Address space data structures
• Open file table

1Concurrency using processes

Processes created with fork can be used for concurrency, but

processes are a heavyweight abstraction requiring significant

resources:

They require:

• Address space data structures
• Open file table
• Process context data

1Concurrency using processes

Processes created with fork can be used for concurrency, but

processes are a heavyweight abstraction requiring significant

resources:

They require:

• Address space data structures
• Open file table
• Process context data
• Etc.

1Concurrency using processes

Processes created with fork can be used for concurrency, but

processes are a heavyweight abstraction requiring significant

resources:

They require:

• Address space data structures
• Open file table
• Process context data
• Etc.

Scheduling a process requires switching address spaces (possibly

losing useful context built up in caches and TLB)

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

2Threads

Threads are a mechanism for concurrency within a single

process/address space

A thread is a ‘‘virtual CPU’’ (program counter and registers):

each thread can be executing a different stream of instructions

Compared to processes, threads are lightweight, requiring only:

2Threads

Threads are a mechanism for concurrency within a single

process/address space

A thread is a ‘‘virtual CPU’’ (program counter and registers):

each thread can be executing a different stream of instructions

Compared to processes, threads are lightweight, requiring only:

• Context (memory in which to save register values when thread
is suspended)

2Threads

Threads are a mechanism for concurrency within a single

process/address space

A thread is a ‘‘virtual CPU’’ (program counter and registers):

each thread can be executing a different stream of instructions

Compared to processes, threads are lightweight, requiring only:

• Context (memory in which to save register values when thread
is suspended)

• A stack

2Threads

Threads are a mechanism for concurrency within a single

process/address space

A thread is a ‘‘virtual CPU’’ (program counter and registers):

each thread can be executing a different stream of instructions

Compared to processes, threads are lightweight, requiring only:

• Context (memory in which to save register values when thread
is suspended)

• A stack
• Thread-local storage (for per-thread variables)

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

3

Pthreads

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

4Pthreads

Pthreads = ‘‘POSIX threads’’

Standard API for using threads on Unix-like systems

Allows:

• Creating threads and waiting for them to complete
• Synchronizing threads (more on this soon)

Can be used for both concurrency and parallelism (on multicore

machines, threads can execute in parallel)

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

5Basic concepts

Some basic concepts:

pthread_t: the thread id data type, each running thread

has a distinct thread id

Thread attributes: runtime characteristics of a thread

• Many programs will just create threads using the default
attributes

Attached vs. detached: a thread is attached if the program

will explicitly call pthread_join to wait for the thread

to finish.

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

6pthread create

#include <pthread.h>

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,

void *(*start_routine) (void *), void *arg);

Creates a new thread. Thread id is stored in variable pointed-to

by thread parameter. The attr parameter specifies attributes

(NULL for default attributes.)

The created thread executes the start routine function, which is

passed arg as its parameter.

Returns 0 if successful.

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

7pthread join

#include <pthread.h>

int pthread_join(pthread_t thread, void **retval);

Waits for specified thread to finish. Only attached threads

can be waited for.

Value returned by exited thread is stored in the variable

pointed-to by retval.

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

8pthread self

#include <pthread.h>

pthread_t pthread_self(void);

Allows a thread to find out its own thread id.

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

9pthread detach

#include <pthread.h>

int pthread_detach(pthread_t thread);

Changes the specified thread to be detached, so that its resources

can be freed without another thread explicitly calling

pthread_join.

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

10Multithreaded web server

Third version of the example web server: mt_webserver.zip on

course web page

Features:

10Multithreaded web server

Third version of the example web server: mt_webserver.zip on

course web page

Features:

• Server will create a thread for each client connection

10Multithreaded web server

Third version of the example web server: mt_webserver.zip on

course web page

Features:

• Server will create a thread for each client connection
• Created threads are detached: the server program doesn’t

wait for them to complete

10Multithreaded web server

Third version of the example web server: mt_webserver.zip on

course web page

Features:

• Server will create a thread for each client connection
• Created threads are detached: the server program doesn’t

wait for them to complete

• No limit on number of threads that can be created

10Multithreaded web server

Third version of the example web server: mt_webserver.zip on

course web page

Features:

• Server will create a thread for each client connection
• Created threads are detached: the server program doesn’t

wait for them to complete

• No limit on number of threads that can be created
• Only the main function is different than previous versions

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

11struct ConnInfo

struct ConnInfo: represents a client connection:

struct ConnInfo {

int clientfd;

const char *webroot;

};

It’s useful to pass an object containing data about the task the

thread has been assigned to the thread’s start function

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

12worker function

The worker function (executed by client connection threads):

void *worker(void *arg) {

struct ConnInfo *info = arg;

pthread_detach(pthread_self());

server_chat_with_client(info->clientfd, info->webroot);

close(info->clientfd);

free(info);

return NULL;

}

A created thread detaches itself, handles the client request,

closes the client socket, frees its ConnInfo object,

then returns

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

13main loop

Main loop:

while (1) {

int clientfd = Accept(serverfd, NULL, NULL);

if (clientfd < 0) {

fatal("Error accepting client connection");

}

struct ConnInfo *info = malloc(sizeof(struct ConnInfo));

info->clientfd = clientfd;

info->webroot = webroot;

pthread_t thr_id;

if (pthread_create(&thr_id, NULL, worker, info) != 0) {

fatal("pthread_create failed");

}

}

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

14Trying it out

Compile and run the server:

$ gcc -o mt_webserver main.c webserver.c csapp.c -lpthread

$./mt_webserver 30000 ./site

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

15Result

Visiting URL http://localhost:30000/index.html

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

16

Multithreaded programming

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

17Shared memory

Main issue with writing multithreaded progams is that the threads

execute in the same address space, so they share memory

A variable written by one thread may be read by another!

• Can be useful for communication between threads
• Can also be dangerous

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

18Reentrancy

Some functions are designed to use global variables:

• strtok (for tokenizing C character string, retains state between
calls)

• gethostbyname returns pointer to global struct hostent object

18Reentrancy

Some functions are designed to use global variables:

• strtok (for tokenizing C character string, retains state between
calls)

• gethostbyname returns pointer to global struct hostent object

Functions which use global variables are not reentrant

18Reentrancy

Some functions are designed to use global variables:

• strtok (for tokenizing C character string, retains state between
calls)

• gethostbyname returns pointer to global struct hostent object

Functions which use global variables are not reentrant

‘‘Reentrant’’ means function can be safely ‘‘reentered’’ before a

currently-executing call to the same function completes

18Reentrancy

Some functions are designed to use global variables:

• strtok (for tokenizing C character string, retains state between
calls)

• gethostbyname returns pointer to global struct hostent object

Functions which use global variables are not reentrant

‘‘Reentrant’’ means function can be safely ‘‘reentered’’ before a

currently-executing call to the same function completes

Non-reentrant functions are dangerous for multithreaded programs

(and also cause issues when called from recursive functions)

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

19Writing reentrant functions

Tips for writing reentrant functions:

19Writing reentrant functions

Tips for writing reentrant functions:

• Don’t use global variables

19Writing reentrant functions

Tips for writing reentrant functions:

• Don’t use global variables

• Memory used by a reentrant function should be limited to
– Local variables (on stack), or

19Writing reentrant functions

Tips for writing reentrant functions:

• Don’t use global variables

• Memory used by a reentrant function should be limited to
– Local variables (on stack), or
– Heap buffers not being used by other threads

19Writing reentrant functions

Tips for writing reentrant functions:

• Don’t use global variables

• Memory used by a reentrant function should be limited to
– Local variables (on stack), or
– Heap buffers not being used by other threads

• It’s a good idea to have functions receive explicit pointers
to memory they should use

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

20Example: strtok vs. strtok r
The strtok function uses an implicit global variable to keep

track of progress:

char buf = "foo bar baz";

printf("%s\n", strtok(buf, " ")); /* prints "foo" */

printf("%s\n", strtok(NULL, " ")); /* prints "bar" */

printf("%s\n", strtok(NULL, " ")); /* prints "baz" */

20Example: strtok vs. strtok r
The strtok function uses an implicit global variable to keep

track of progress:

char buf = "foo bar baz";

printf("%s\n", strtok(buf, " ")); /* prints "foo" */

printf("%s\n", strtok(NULL, " ")); /* prints "bar" */

printf("%s\n", strtok(NULL, " ")); /* prints "baz" */

The reentrant strtok_r function makes the progress variable

explicit by taking a pointer to it as a parameter:

/* same output as code example above */

char buf = "foo bar baz", *save;

printf("%s\n", strtok_r(buf, " ", &save));

printf("%s\n", strtok_r(NULL, " ", &save));

printf("%s\n", strtok_r(NULL, " ", &save));

20Example: strtok vs. strtok r
The strtok function uses an implicit global variable to keep

track of progress:

char buf = "foo bar baz";

printf("%s\n", strtok(buf, " ")); /* prints "foo" */

printf("%s\n", strtok(NULL, " ")); /* prints "bar" */

printf("%s\n", strtok(NULL, " ")); /* prints "baz" */

The reentrant strtok_r function makes the progress variable

explicit by taking a pointer to it as a parameter:

/* same output as code example above */

char buf = "foo bar baz", *save;

printf("%s\n", strtok_r(buf, " ", &save));

printf("%s\n", strtok_r(NULL, " ", &save));

printf("%s\n", strtok_r(NULL, " ", &save));

Always use reentrant versions of library functions, and make your

own functions reentrant!

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

21Synchronization

For many (but not all!) multithreaded programs, it’s useful to have

explicit communication/interaction between threads

Concurrently-executing threads can use shared data structures

to communicate

21Synchronization

For many (but not all!) multithreaded programs, it’s useful to have

explicit communication/interaction between threads

Concurrently-executing threads can use shared data structures

to communicate

But: concurrent modification of shared data is likely to lead to

violated data structure invariants, corrupted program state, etc.

21Synchronization

For many (but not all!) multithreaded programs, it’s useful to have

explicit communication/interaction between threads

Concurrently-executing threads can use shared data structures

to communicate

But: concurrent modification of shared data is likely to lead to

violated data structure invariants, corrupted program state, etc.

Synchronization mechanisms allow multiple threads to access

shared data cooperatively

• More on this next time
• 10 second version: queues are awesome

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

22

Parallel computation

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

23Mandelbrot set

Assume C is a complex number, and Z0 = 0 + 0i

Iterate the following equation an arbitrary number of times,

starting with Z0:

Zn+1 = Zn
2 + C

Does the magnitude of Z ever reach 2 (for any finite number of
iterations)?

• No → C is in the Mandelbrot set

• Yes → C is not in the Mandelbrot set

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

24Visualizing the Mandelbrot set

For some region of the complex plane, sample points and determine

whether they are in the Mandelbrot set

Assume a point C is in the set if the equation can be iterated
at large number of times without magnitude of Z reaching 2

For points C not in the set, choose a color based on number of
iterations before magnitude of Z reaches 2

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

25Complex numbers

typedef struct { double real, imag; } Complex;

static inline Complex complex_add(Complex left, Complex right) {

Complex sum = { left.real+right.real, left.imag+right.imag };

return sum;

}

static inline Complex complex_mul(Complex left, Complex right) {

double a = left.real, b = left.imag, c = right.real, d = right.imag;

Complex prod = { a*c - b*d, b*c + a*d };

return prod;

}

static inline double complex_mag(Complex c) {

return sqrt(c.real*c.real + c.imag*c.imag);

}

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

26Computation

Function to iterate the equation for a specific complex number,

up to a maximum number of iterations

int mandel_num_iters(Complex c) {

Complex z = { 0.0, 0.0 };

int num_iters = 0;

while (complex_mag(z) < 2.0 && num_iters < MAX_ITERS) {

z = complex_add(complex_mul(z, z), c);

num_iters++;

}

return num_iters;

}

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

27Visualization

For complex numbers a+ bi where −2 < a < 2 and −2 < b < 2:

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

28Visualization

For complex numbers a+ bi where −1.28667 < a < −1.066667 and
−0.413333 < b < −0.193333:

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

29Observation

The computation for each point in the complex plane is completely

independent

• I.e., an embarrassingly parallel problem

We can speed up the computation by doing the computation for different

points in parallel on multiple CPU cores

Approach:

• Use an array to store iteration counts (one per complex number)
• Create fixed number of computation threads
• Assign a subset of array elements to each computation thread
• When all threads have finished, use iteration counts to render image

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

30Fork/join parallel computation

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

31Sequential computation

Core of the sequential Mandelbrot computation:

int *iters = malloc(sizeof(int) * NROWS * NCOLS);

for (int i = 0; i < NROWS; i++) {

mandel_compute_row(iters, NROWS, NCOLS,

xmin, xmax, ymin, ymax,

i);

}

The mandel_compute_row function computes iteration counts for

a row of complex numbers, storing them in the iters array

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

32Fork/join: task struct, start func

typedef struct {

double xmin, xmax, ymin, ymax;

int *iters;

int start_row, skip;

} Work;

void *worker(void *arg) {

Work *work = arg;

for (int i = work->start_row; i < NROWS; i += work->skip) {

mandel_compute_row(work->iters, NROWS, NCOLS,

work->xmin, work->xmax, work->ymin, work->ymax,

i);

}

return NULL;

}

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

33Fork/join: parallel computation

/* master work assignment */

Work master = { xmin, xmax, ymin, ymax, iters, 0, NUM_THREADS };

/* start threads */

pthread_t threads[NUM_THREADS];

Work work[NUM_THREADS];

for (int i = 0; i < NUM_THREADS; i++) {

work[i] = master;

work[i].start_row = i; /* each thread has different start row */

pthread_create(&threads[i], NULL, worker, &work[i]);

}

/* wait for threads to complete */

for (int i = 0; i < NUM_THREADS; i++) {

pthread_join(threads[i], NULL);

}

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

34Results

Running sequential vs. 4 threads on Core i5-3470T (dual core,

hyperthreaded):

$ time ./mandelbrot -1.286667 -1.066667 -0.413333 -0.193333

Success?

real 0m2.020s

user 0m2.012s

sys 0m0.008s

$ time ./mandelbrot_par -1.286667 -1.066667 -0.413333 -0.193333

Success?

real 0m0.815s

user 0m3.054s

sys 0m0.000s

Source code on web page: mandelbrot.zip

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

