
Concurrency with pthreads

David Hovemeyer

22 November 2019

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

1Concurrency using processes

Processes created with fork can be used for concurrency, but

processes are a heavyweight abstraction requiring significant

resources:

They require:

• Address space data structures

• Open file table

• Process context data

• Etc.

Scheduling a process requires switching address spaces (possibly

losing useful context built up in caches and TLB)

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

2Threads

Threads are a mechanism for concurrency within a single

process/address space

A thread is a ‘‘virtual CPU’’ (program counter and registers):

each thread can be executing a different stream of instructions

Compared to processes, threads are lightweight, requiring only:

• Context (memory in which to save register values when thread
is suspended)

• A stack

• Thread-local storage (for per-thread variables)

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

3

Pthreads

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

4Pthreads

Pthreads = ‘‘POSIX threads’’

Standard API for using threads on Unix-like systems

Allows:

• Creating threads and waiting for them to complete

• Synchronizing threads (more on this soon)

Can be used for both concurrency and parallelism (on multicore

machines, threads can execute in parallel)

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

5Basic concepts

Some basic concepts:

pthread_t: the thread id data type, each running thread

has a distinct thread id

Thread attributes: runtime characteristics of a thread

• Many programs will just create threads using the default
attributes

Attached vs. detached: a thread is attached if the program

will explicitly call pthread_join to wait for the thread

to finish.

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

6pthread create

#include <pthread.h>

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,

void *(*start_routine) (void *), void *arg);

Creates a new thread. Thread id is stored in variable pointed-to

by thread parameter. The attr parameter specifies attributes

(NULL for default attributes.)

The created thread executes the start routine function, which is

passed arg as its parameter.

Returns 0 if successful.

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

7pthread join

#include <pthread.h>

int pthread_join(pthread_t thread, void **retval);

Waits for specified thread to finish. Only attached threads

can be waited for.

Value returned by exited thread is stored in the variable

pointed-to by retval.

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

8pthread self

#include <pthread.h>

pthread_t pthread_self(void);

Allows a thread to find out its own thread id.

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

9pthread detach

#include <pthread.h>

int pthread_detach(pthread_t thread);

Changes the specified thread to be detached, so that its resources

can be freed without another thread explicitly calling

pthread_join.

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

10Multithreaded web server

Third version of the example web server: mt_webserver.zip on

course web page

Features:

• Server will create a thread for each client connection

• Created threads are detached: the server program doesn’t

wait for them to complete

• No limit on number of threads that can be created

• Only the main function is different than previous versions

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

11struct ConnInfo

struct ConnInfo: represents a client connection:

struct ConnInfo {

int clientfd;

const char *webroot;

};

It’s useful to pass an object containing data about the task the

thread has been assigned to the thread’s start function

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

12worker function

The worker function (executed by client connection threads):

void *worker(void *arg) {

struct ConnInfo *info = arg;

pthread_detach(pthread_self());

server_chat_with_client(info->clientfd, info->webroot);

close(info->clientfd);

free(info);

return NULL;

}

A created thread detaches itself, handles the client request,

closes the client socket, frees its ConnInfo object,

then returns

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

13main loop

Main loop:

while (1) {

int clientfd = Accept(serverfd, NULL, NULL);

if (clientfd < 0) {

fatal("Error accepting client connection");

}

struct ConnInfo *info = malloc(sizeof(struct ConnInfo));

info->clientfd = clientfd;

info->webroot = webroot;

pthread_t thr_id;

if (pthread_create(&thr_id, NULL, worker, info) != 0) {

fatal("pthread_create failed");

}

}

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

14Trying it out

Compile and run the server:

$ gcc -o mt_webserver main.c webserver.c csapp.c -lpthread

$./mt_webserver 30000 ./site

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

15Result

Visiting URL http://localhost:30000/index.html

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

16

Multithreaded programming

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

17Shared memory

Main issue with writing multithreaded progams is that the threads

execute in the same address space, so they share memory

A variable written by one thread may be read by another!

• Can be useful for communication between threads

• Can also be dangerous

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

18Reentrancy

Some functions are designed to use global variables:

• strtok (for tokenizing C character string, retains state between
calls)

• gethostbyname returns pointer to global struct hostent object

Functions which use global variables are not reentrant

‘‘Reentrant’’ means function can be safely ‘‘reentered’’ before a

currently-executing call to the same function completes

Non-reentrant functions are dangerous for multithreaded programs

(and also cause issues when called from recursive functions)

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

19Writing reentrant functions

Tips for writing reentrant functions:

• Don’t use global variables

• Memory used by a reentrant function should be limited to

– Local variables (on stack), or
– Heap buffers not being used by other threads

• It’s a good idea to have functions receive explicit pointers
to memory they should use

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

20Example: strtok vs. strtok r
The strtok function uses an implicit global variable to keep

track of progress:

char buf[] = "foo bar baz";

printf("%s\n", strtok(buf, " ")); /* prints "foo" */

printf("%s\n", strtok(NULL, " ")); /* prints "bar" */

printf("%s\n", strtok(NULL, " ")); /* prints "baz" */

The reentrant strtok_r function makes the progress variable

explicit by taking a pointer to it as a parameter:

/* same output as code example above */

char buf[] = "foo bar baz", *save;

printf("%s\n", strtok_r(buf, " ", &save));

printf("%s\n", strtok_r(NULL, " ", &save));

printf("%s\n", strtok_r(NULL, " ", &save));

Always use reentrant versions of library functions, and make your

own functions reentrant!

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

21Synchronization

For many (but not all!) multithreaded programs, it’s useful to have

explicit communication/interaction between threads

Concurrently-executing threads can use shared data structures

to communicate

But: concurrent modification of shared data is likely to lead to

violated data structure invariants, corrupted program state, etc.

Synchronization mechanisms allow multiple threads to access

shared data cooperatively

• More on this next time

• 10 second version: queues are awesome

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

22

Parallel computation

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

23Mandelbrot set

Assume C is a complex number, and Z0 = 0 + 0i

Iterate the following equation an arbitrary number of times,

starting with Z0:

Zn+1 = Zn
2 + C

Does the magnitude of Z ever reach 2 (for any finite number of
iterations)?

• No → C is in the Mandelbrot set

• Yes → C is not in the Mandelbrot set

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

24Visualizing the Mandelbrot set

For some region of the complex plane, sample points and determine

whether they are in the Mandelbrot set

Assume a point C is in the set if the equation can be iterated
at large number of times without magnitude of Z reaching 2

For points C not in the set, choose a color based on number of
iterations before magnitude of Z reaches 2

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

25Complex numbers

typedef struct { double real, imag; } Complex;

static inline Complex complex_add(Complex left, Complex right) {

Complex sum = { left.real+right.real, left.imag+right.imag };

return sum;

}

static inline Complex complex_mul(Complex left, Complex right) {

double a = left.real, b = left.imag, c = right.real, d = right.imag;

Complex prod = { a*c - b*d, b*c + a*d };

return prod;

}

static inline double complex_mag(Complex c) {

return sqrt(c.real*c.real + c.imag*c.imag);

}

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

26Computation

Function to iterate the equation for a specific complex number,

up to a maximum number of iterations

int mandel_num_iters(Complex c) {

Complex z = { 0.0, 0.0 };

int num_iters = 0;

while (complex_mag(z) < 2.0 && num_iters < MAX_ITERS) {

z = complex_add(complex_mul(z, z), c);

num_iters++;

}

return num_iters;

}

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

27Visualization

For complex numbers a+ bi where −2 < a < 2 and −2 < b < 2:

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

28Visualization

For complex numbers a+ bi where −1.28667 < a < −1.066667 and
−0.413333 < b < −0.193333:

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

29Observation

The computation for each point in the complex plane is completely

independent

• I.e., an embarrassingly parallel problem

We can speed up the computation by doing the computation for different

points in parallel on multiple CPU cores

Approach:

• Use an array to store iteration counts (one per complex number)

• Create fixed number of computation threads

• Assign a subset of array elements to each computation thread

• When all threads have finished, use iteration counts to render image

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

30Fork/join parallel computation

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

31Sequential computation

Core of the sequential Mandelbrot computation:

int *iters = malloc(sizeof(int) * NROWS * NCOLS);

for (int i = 0; i < NROWS; i++) {

mandel_compute_row(iters, NROWS, NCOLS,

xmin, xmax, ymin, ymax,

i);

}

The mandel_compute_row function computes iteration counts for

a row of complex numbers, storing them in the iters array

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

32Fork/join: task struct, start func

typedef struct {

double xmin, xmax, ymin, ymax;

int *iters;

int start_row, skip;

} Work;

void *worker(void *arg) {

Work *work = arg;

for (int i = work->start_row; i < NROWS; i += work->skip) {

mandel_compute_row(work->iters, NROWS, NCOLS,

work->xmin, work->xmax, work->ymin, work->ymax,

i);

}

return NULL;

}

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

33Fork/join: parallel computation

/* master work assignment */

Work master = { xmin, xmax, ymin, ymax, iters, 0, NUM_THREADS };

/* start threads */

pthread_t threads[NUM_THREADS];

Work work[NUM_THREADS];

for (int i = 0; i < NUM_THREADS; i++) {

work[i] = master;

work[i].start_row = i; /* each thread has different start row */

pthread_create(&threads[i], NULL, worker, &work[i]);

}

/* wait for threads to complete */

for (int i = 0; i < NUM_THREADS; i++) {

pthread_join(threads[i], NULL);

}

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

34Results

Running sequential vs. 4 threads on Core i5-3470T (dual core,

hyperthreaded):

$ time ./mandelbrot -1.286667 -1.066667 -0.413333 -0.193333

Success?

real 0m2.020s

user 0m2.012s

sys 0m0.008s

$ time ./mandelbrot_par -1.286667 -1.066667 -0.413333 -0.193333

Success?

real 0m0.815s

user 0m3.054s

sys 0m0.000s

Source code on web page: mandelbrot.zip

David Hovemeyer Computer Systems Fundamentals: Concurrency with pthreads 22 November 2019

