Midterm Exam

600.233 Computer Systems Fundamentals Fall 2016 Johns Hopkins University Instructor: Prof. Philipp Koehn

14 October 2016

Complete all questions.

Use additional paper if needed.

Time: 50 minutes.

Name of student:

Q1. Analysis of Circuit

25 points

Consider the following circuit:

Assume that at the onset, the wires are activated as follows: A=0, B=0, C=1, D=0.

Moreover, assume that it takes 1ms for a NOR gate to change its output value.

The following actions are performed:

- At time 10ms, the key connected to wire (A) is closed.
- At time 20ms, the key connected to wire (A) is opened.
- At time 30ms, the key connected to wire (B) is closed.
- At time 40ms, the key connected to wire (B) is opened.

Trace the activation levels for each wire (A)–(D) at each time step when wire activations change values.

Time	(A)	(B)	(C)	(D)
0 ms	0	0	1	0
10 ms				
11 ms				
L				

Q2. Design a Circuit

You are given the following truth table for a function.

А	B	C	OUT
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Design a circuit with AND, OR, and NOT gates that implements this function (hint: use CNF or DNF).

Q3. Boolean Logic Unit

Design the following component.

Inputs are A and B.

Flag AND indicates the operation.

- If the AND input flag is 1, then the OUT value is A AND B.
- If the AND input flag is 0, then the OUT value is A OR B.

Design this component with AND, OR, and NOT gates.

25 points

Q4. SCRAM

Consider the following code of a SCRAM-like program.

Address	Operation	Data
0	PRINT	11
1	PRINT	12
2	LDA	11
3	ADD	12
4	PRINT	AC
5	STA	13
6	LDA	12
7	STA	11
8	LDA	13
9	STA	12
10	JMP	2
11	DAT	0
12	DAT	1
13	DAT	0

Operations:

- STA: store accumulator
- LDA: load accumulator
- ADD: add to accumulator
- JMP: jump to memory address
- DAT: dummy instruction (data value used only)
- PRINT: print accumulator or memory value

Note that the program runs in an infinite loop.

What are the first 6 numbers printed by the program?

Show your work (for instance by reporting values in relevant memory locations).