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More refinements



» On-CPU cache
— integrate cache and virtual memory

» Slow look-up time
— use translation lookahead buffer (TLB)

» Huge address space
— multi-level page table

» Putting it all together



Page Table Size

» Example
» 32 bit address space: 4GB
» Page size: 4KB
» Size of page table entry: 4 bytes
— Number of pages: 1M
— Size of page table: 4MB
» Recall: one page table per process

» Very wasteful: most of the address space is not used



2-Level Page Table

Level 1 Level 2
page table page table
Valid  Physical page
) PTE 0
Valid Level 2 page table /
L2PTO
2PT1 PTE 1023
null
23:: Valid  Physical page
nal PTE 0
null
null
5pT8 PTE 1023
null
null Valid  Physical page

PTE 1023




Multi-Level Page Table

» Our example: 1M entries

» 2-level page table
— each level 1K entry (1K?=1M)

» 4-level page table
— each level 32 entry (324=1M)



Zoom poll!

On a 64-bit architecture, assume A. 3
that pages are 4 KB (4096 bytes) B 4
in size. Assume that all page tables C 5
(Level 1, Level 2, etc.) are 4 KB.
Note that 4096 = 2%2. D. 6
E. More than 6

How many levels (counting the
physical pages as a level) would be
needed to cover the entire 2%4 byte
address space?



» On-CPU cache
— integrate cache and virtual memory

» Slow look-up time
— use translation lookahead buffer (TLB)

» Huge address space
— multi-level page table

» Putting it all together



Virtual Address
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Translation Lookup Buffer
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Compose Address
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L1 Cache Lookup
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Return Data From L1 Cache
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Translation Lookup Buffer Miss
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L1 Cache Miss
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Core i7



Chip Layout
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» Virtual memory: 48 bit (— 2* = 256TB address space)
» Physical memory: 52 bit (— 2°2 = 4PB address space)
» Page size: 12 bit (— 2!? = 4KB)

= 2% = 64G entries, split in 4 levels (512 entries each)
» Translation lookup buffer (TLB): 4-way associative, 16 entries
» L1 cache: 8-way associative, 64 sets, 64 byte blocks (32 KB)
» L2 cache: 8-way associative, 512 sets, 64 byte blocks (256 KB)
» L3 cache: 16-way associative, 8K sets, 64 byte blocks (8 MB)



Linux



vy

Close co-operation between hardware and software
Each process has its own virtual address space, page table

Translation look-up buffer
when switching processes — flush

Page table
when switching processes — update pointer to top-level page table

Page tables are always in physical memory
— pointers to page table do not require translation



Handling Page Faults

» Page faults trigger an exception (hardware)
» Exception is handled by software (Linux kernel)
» Kernel must determine what to do



Linux Virtual Memory Areas

task_struct mm_struct

vm_area_struct

Process VM

vm_end

\ 4

mm pgd

vm_start

mmap

» pgd: address of page table
» vm_flags: private, shared

» vm_prot: read, write

vm_prot
vm_flags

vm_next

vm_end
vm_start
vm_prot

Shared Libraries

vm_flags

vm_next

Data

vm_end

Text

vm_start —

vm_prot
vm_flags

vm_next




Handling Page Faults

vm_area_struct

Process VM

vm_end

vm_start

vm_prot

vm_flags

Shared Libraries

|: vm_next
vm_end

vm_start

vm_prot

[<—— Segmentation fault

vm_flags

Data

[<—— Normal page fault
(-> load page)

|: vm_next
vm_end

Text

<—— Protection exception
(if write)

vm_start

vm_prot

vm_flags

vm_next

Kernel walks through vm_area_struct list to resolve page fault



Memory mapping



Objects on Disk

» Area of virtual memory = file on disk

» Regular file in file system
» file divided up into pages
» demand loading: just mapped to addresses, not actually loaded
» could be code, shared library, data file
» Anonymous file
» typically allocated memory
» when used for the first time: set all values to zero
» never really on disk, except when swapped out



Shared Object

» A shared object is a file on disk
» Private object

» only its process can read/write

» changes not visible to other processes
» Shared object

» multiple processes can read/write
» changes visible to other processes



fork()

» Creates a new child process
» Copies all

» virtual memory area structures
» memory mapping structures
» page tables

» New process has identical access
to existing memory

User stack

v
A

Memory-mapped region
for shared libraries

f

Run time heap (created by
malloc)




execve()

» Creates a new process

» Deletes all user areas

» Map private areas (.data, .code, .bss)
» Map shared libraries

» Set program counter

User stack

v
A

Memory-mapped region
for shared libraries

f

Run time heap (created by
malloc)




User-Level Memory Mapping

» Process can create virtual memory areas with mmap
(may be loaded from file)
» Protection options (handled by kernel / hardware)
» executable code
» read
> write
» inaccessible
» Mapping options
» anonymous: data object initially zeroed out
» private
» shared



Dynamic memory allocation



Memory Allocation in C

» malloc()
» allocate specified amount of data
» return pointer to (virtual) address
» memory is allocated on heap
> free()
» frees memory allocated at pointer location
» may be between other allocated memory

» Need to track of list of allocated memory



» Each square is a 4-byte word

» Heap consists of 20 words

» Allocations must be aligned on a multiple of 8
» Shading indicates use:

» No shading: unallocated memory
» Dark: allocated memory
» Light: padding to ensure alignment



hllllllllllllllll

pl = malloc(4*sizeof(int))




hllllllllllllllll

pl = malloc(4*sizeof(int))
pl p2
N [ [T T TTTTT]

p2 = malloc(5*sizeof(int))
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pl = malloc(4*sizeof(int))

pl p2
DT [ T TTTTTTT]
p2 = malloc(5*sizeof(int))

pl p2 p3

p3 = malloc(6*sizeof(int))
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pl = malloc(4*sizeof(int))

pl p2
IR T [ [ [ [[TTTT]
p2 = malloc(5*sizeof(int))

pl p2 p3
T P (771
p3 = malloc(6*sizeof(int))

pl p3

free(p2)
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pl = malloc(4*sizeof(int))

pl p2
IR T [ [ [ [[TTTT]
p2 = malloc(5*sizeof(int))

pl p2 p3
T P (771
p3 = malloc(6*sizeof(int))

pl p3

IO [ [ [T T P [ 111
free(p2)

pl p4 p3
I [ [ T T [ 111
p4d = malloc(2*sizeof(int))




Fragmentation

» Internal: unused space due to padding for
» alignment
» minimum block size
» External: as memory is allocated and freed:
» allocated blocks are scattered over the heap area
» there are gaps of various sizes between allocated blocks
» it might not be possible to find a large enough gap to satisfy an
allocation request, even though enough aggregate memory is available



» Free list
» need to maintain a list of free memory areas
» implicit: space between allocated memory
» explicit: maintain a separate list
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