
Lecture 29: Concurrency with processes

David Hovemeyer

November 17, 2021

601.229 Computer Systems Fundamentals

Web server

Main web server loop:
while (1) {

int clientfd = Accept(serverfd, NULL, NULL);
if (clientfd < 0) { fatal("Error accepting client connection"); }
server_chat_with_client(clientfd, webroot);
close(clientfd);

}

Do you see any limitations of this design?

The server can only communicate with one client at a time

Web server

Main web server loop:
while (1) {

int clientfd = Accept(serverfd, NULL, NULL);
if (clientfd < 0) { fatal("Error accepting client connection"); }
server_chat_with_client(clientfd, webroot);
close(clientfd);

}

Do you see any limitations of this design?

The server can only communicate with one client at a time

Concurrency

In general, servers (including web servers) can receive requests from many
clients, simultaneously

Concurrency : Processing involving multiple tasks that can execute
asynchronously with respect to each other
I E.g., multiple server/client conversations could be ongoing at the same

time

It would be good if our web server could serve multiple clients concurrently

Concurrency vs. parallelism

Concurrency is distinct from parallelism

Consider two tasks, A and B, consisting of a sequence of instructions

A and B execute concurrently if relative ordering of instructions in A and B is
not guaranteed
I I.e., an instruction in A could happen either “before” or “after” an

instruction in B

A and B execute in parallel if instructions in A and B can execute at the same
time
I Parallel execution requires multiple processors or cores

Parallelism implies concurrency, but concurrency does not imply parallelism

Concurrency vs. parallelism

Concurrency is distinct from parallelism

Consider two tasks, A and B, consisting of a sequence of instructions

A and B execute concurrently if relative ordering of instructions in A and B is
not guaranteed
I I.e., an instruction in A could happen either “before” or “after” an

instruction in B

A and B execute in parallel if instructions in A and B can execute at the same
time
I Parallel execution requires multiple processors or cores

Parallelism implies concurrency, but concurrency does not imply parallelism

Concurrency vs. parallelism

Concurrency is distinct from parallelism

Consider two tasks, A and B, consisting of a sequence of instructions

A and B execute concurrently if relative ordering of instructions in A and B is
not guaranteed
I I.e., an instruction in A could happen either “before” or “after” an

instruction in B

A and B execute in parallel if instructions in A and B can execute at the same
time
I Parallel execution requires multiple processors or cores

Parallelism implies concurrency, but concurrency does not imply parallelism

Concurrency vs. parallelism

Concurrency is distinct from parallelism

Consider two tasks, A and B, consisting of a sequence of instructions

A and B execute concurrently if relative ordering of instructions in A and B is
not guaranteed
I I.e., an instruction in A could happen either “before” or “after” an

instruction in B

A and B execute in parallel if instructions in A and B can execute at the same
time
I Parallel execution requires multiple processors or cores

Parallelism implies concurrency, but concurrency does not imply parallelism

Concurrency with processes

Multi-process web server

Code on web page: mp_webserver.zip
I Only the main function is different than original webserver.zip

We’ll discuss some of the interesting implementation issues

Processes

We’ve seen that the fork system call makes a new child process that is a
duplicate of the parent process
I Including inheriting open files

Idea: each time the server accepts a connection, fork a child process to handle
communication with that client

Multiple child processes can be executing concurrently
I OS kernel is responsible for allocating CPU time and handling I/O

Processes

We’ve seen that the fork system call makes a new child process that is a
duplicate of the parent process
I Including inheriting open files

Idea: each time the server accepts a connection, fork a child process to handle
communication with that client

Multiple child processes can be executing concurrently
I OS kernel is responsible for allocating CPU time and handling I/O

Design

Issue: we may want to limit the number of simultaneous child processes
I Processes are somewhat heavyweight in terms of system resources

Before starting a child process, the server loop will wait to make sure fewer
than the maximum number of child processes are running

wait, SIGCHLD

Several system calls exist to allow a parent process to receive a child process’s
exit status (wait, waitpid)

If a child terminates but the parent doesn’t wait for it, it can become a zombie

A parent process can handle the SIGCHLD signal in order to be notified when a
child process exits

Idea: parent will keep a count of how many child processes are running: use
wait system call and SIGCHLD signal handler to detect when child processes
complete

wait, SIGCHLD

Several system calls exist to allow a parent process to receive a child process’s
exit status (wait, waitpid)

If a child terminates but the parent doesn’t wait for it, it can become a zombie

A parent process can handle the SIGCHLD signal in order to be notified when a
child process exits

Idea: parent will keep a count of how many child processes are running: use
wait system call and SIGCHLD signal handler to detect when child processes
complete

Signal handlers

The signal and sigaction system calls can be used to register a signal
handler function for a particular signal

Signal handler for the SIGCHLD signal, so server is notified when a child
process terminates:

/* current number of child processes running */
int g_num_procs;

void sigchld_handler(int signo) {
int wstatus;
wait(&wstatus);
if (WIFEXITED(wstatus) || WIFSIGNALED(wstatus)) {

g_num_procs--;
}

}

Registering a signal handler

Register the sigchld_handler function as a handler for the SIGCHLD signal:
struct sigaction sa;
sigemptyset(&sa.sa_mask);
sa.sa_flags = 0;
sa.sa_handler = sigchld_handler;
sigaction(SIGCHLD, &sa, NULL);

When a child process terminates, the OS kernel will deliver a SIGCHLD signal,
and the sigchld_handler function will be called

Preparing to fork

Before forking a child process, the server will wait until the number of
processes is at least one less than the maximum:

while (g_num_procs >= MAX_PROCESSES) {
int wstatus;
wait(&wstatus);
if (WIFEXITED(wstatus) || WIFSIGNALED(wstatus))

g_num_procs--;
}

int clientfd = Accept(serverfd, NULL, NULL);

g_num_procs++;
pid_t pid = fork();

(Does this work?)

A data race

Consider the loop to wait until g_num_procs is less than the maximum:
while (g_num_procs >= MAX_PROCESSES) {

int wstatus;
wait(&wstatus);

The thing to understand about signals is that, in general, they can be
delivered at any time

Imagine that SIGCHLD is received after checking g_num_procs but before
calling wait

Assuming that sigchld_handler detects that a child process has exited, the
call to wait is unnecessary
I If MAX_PROCESSES is 1, server is deadlocked!

A data race

Consider the loop to wait until g_num_procs is less than the maximum:
while (g_num_procs >= MAX_PROCESSES) {

int wstatus;
wait(&wstatus);

The thing to understand about signals is that, in general, they can be
delivered at any time

Imagine that SIGCHLD is received after checking g_num_procs but before
calling wait

Assuming that sigchld_handler detects that a child process has exited, the
call to wait is unnecessary

I If MAX_PROCESSES is 1, server is deadlocked!

A data race

Consider the loop to wait until g_num_procs is less than the maximum:
while (g_num_procs >= MAX_PROCESSES) {

int wstatus;
wait(&wstatus);

The thing to understand about signals is that, in general, they can be
delivered at any time

Imagine that SIGCHLD is received after checking g_num_procs but before
calling wait

Assuming that sigchld_handler detects that a child process has exited, the
call to wait is unnecessary
I If MAX_PROCESSES is 1, server is deadlocked!

Another data race

Consider the following seemingly innocuous statement:
g_num_procs--;

The code generated by the compiler is likely to be something similar to:
int tmp = g_num_procs;
tmp = tmp - 1;
g_num_procs = tmp;

Note that tmp would really be a register

Consider what happens if a SIGCHLD signal is received after the initial value of
g_num_procs is read, but before the updated value of tmp is stored back to
g_num_procs
I A decrement of g_num_procs (in sigchld_handler) is lost, and the

server no longer knows how many child processes are running!

Another data race

Consider the following seemingly innocuous statement:
g_num_procs--;

The code generated by the compiler is likely to be something similar to:
int tmp = g_num_procs;
tmp = tmp - 1;
g_num_procs = tmp;

Note that tmp would really be a register

Consider what happens if a SIGCHLD signal is received after the initial value of
g_num_procs is read, but before the updated value of tmp is stored back to
g_num_procs

I A decrement of g_num_procs (in sigchld_handler) is lost, and the
server no longer knows how many child processes are running!

Another data race

Consider the following seemingly innocuous statement:
g_num_procs--;

The code generated by the compiler is likely to be something similar to:
int tmp = g_num_procs;
tmp = tmp - 1;
g_num_procs = tmp;

Note that tmp would really be a register

Consider what happens if a SIGCHLD signal is received after the initial value of
g_num_procs is read, but before the updated value of tmp is stored back to
g_num_procs
I A decrement of g_num_procs (in sigchld_handler) is lost, and the

server no longer knows how many child processes are running!

Data race explained

Consider code implementing g_num_procs--:

// Assume tmp is a register
int tmp = g_num_procs;

tmp = tmp - 1;
g_num_procs = tmp;

Data race explained

Consider code implementing g_num_procs--:

// Assume tmp is a register
int tmp = g_num_procs; value of g_num_procs loaded to tmp

tmp = tmp - 1;
g_num_procs = tmp;

Data race explained

Consider code implementing g_num_procs--:

// Assume tmp is a register
int tmp = g_num_procs;

SIGCHLD handled, g_num_procs decremented
tmp = tmp - 1;
g_num_procs = tmp;

Data race explained

Consider code implementing g_num_procs--:

// Assume tmp is a register
int tmp = g_num_procs;

tmp = tmp - 1; tmp (old value of g_num_procs) decremented
g_num_procs = tmp;

Data race explained

Consider code implementing g_num_procs--:

// Assume tmp is a register
int tmp = g_num_procs;

tmp = tmp - 1;
g_num_procs = tmp; invalid count stored in g_num_procs

Data race explained

Consider code implementing g_num_procs--:

// Assume tmp is a register
int tmp = g_num_procs;

tmp = tmp - 1;
g_num_procs = tmp;

Oops!

Data race

A data race is a (potential) bug where two concurrently-executing paths
access a shared variable, and at least one path writes to the variable
I Paths “race” to access shared data, outcome depends on which one

“wins”

Data race is a special case of a race condition, a situation where an execution
outcome depends on unpredictable event sequencing

A data race can cause data invariants to be violated (e.g., “g_num_procs
accurately reflects the number of processes running”)

Solution: synchronization
I Implement a protocol to avoid uncontrolled access to shared data

Data race

A data race is a (potential) bug where two concurrently-executing paths
access a shared variable, and at least one path writes to the variable
I Paths “race” to access shared data, outcome depends on which one

“wins”

Data race is a special case of a race condition, a situation where an execution
outcome depends on unpredictable event sequencing

A data race can cause data invariants to be violated (e.g., “g_num_procs
accurately reflects the number of processes running”)

Solution: synchronization
I Implement a protocol to avoid uncontrolled access to shared data

Data race

A data race is a (potential) bug where two concurrently-executing paths
access a shared variable, and at least one path writes to the variable
I Paths “race” to access shared data, outcome depends on which one

“wins”

Data race is a special case of a race condition, a situation where an execution
outcome depends on unpredictable event sequencing

A data race can cause data invariants to be violated (e.g., “g_num_procs
accurately reflects the number of processes running”)

Solution: synchronization
I Implement a protocol to avoid uncontrolled access to shared data

sigprocmask to the rescue

Signal handler functions are a potential cause of data races because they
execute asynchronously with respect to normal program execution
I OS kernel could deliver a signal at any time

sigprocmask: allows program to block and unblock a specific signal or signals

Idea: block SIGCHLD whenever g_num_procs is being accessed by program
code
I Prevent sigchld_handler from unexpectedly modifying g_num_procs

sigprocmask to the rescue

Signal handler functions are a potential cause of data races because they
execute asynchronously with respect to normal program execution
I OS kernel could deliver a signal at any time

sigprocmask: allows program to block and unblock a specific signal or signals

Idea: block SIGCHLD whenever g_num_procs is being accessed by program
code
I Prevent sigchld_handler from unexpectedly modifying g_num_procs

sigprocmask to the rescue

Signal handler functions are a potential cause of data races because they
execute asynchronously with respect to normal program execution
I OS kernel could deliver a signal at any time

sigprocmask: allows program to block and unblock a specific signal or signals

Idea: block SIGCHLD whenever g_num_procs is being accessed by program
code
I Prevent sigchld_handler from unexpectedly modifying g_num_procs

blocking/unblocking SIGCHLD

toggle_sigchld function:
void toggle_sigchld(int how) {

sigset_t sigs;
sigemptyset(&sigs);
sigaddset(&sigs, SIGCHLD);
sigprocmask(how, &sigs, NULL);

}

Use to protect accesses to g_num_procs:
toggle_sigchld(SIG_BLOCK);
g_num_procs++;
toggle_sigchld(SIG_UNBLOCK);

Back to the web server!

Web server main loop:
while (1) {

wait_for_avail_proc();
int clientfd = accept connection from client
toggle_sigchld(SIG_BLOCK);
g_num_procs++;
toggle_sigchld(SIG_UNBLOCK);
pid_t pid = fork();
if (pid < 0) {

fatal("fork failed");
} else if (pid == 0) { /* in child */

server_chat_with_client(clientfd, webroot);
close(clientfd);
exit(0);

}
close(clientfd);

}

File descriptor sharing

When a subprocess is forked, the child process inherits the parent process’s file
descriptors

In the web server, the forked child process inherits clientfd, the socket
connected to the client
I Convenient, since we want the child process to handle the client’s request

Important: the parent process must close clientfd, otherwise the web server
will have a file descriptor leak
I OS kernel imposes limit on number of open files per process
I Too many file descriptors open → can’t open any more files or sockets

File descriptor sharing

When a subprocess is forked, the child process inherits the parent process’s file
descriptors

In the web server, the forked child process inherits clientfd, the socket
connected to the client
I Convenient, since we want the child process to handle the client’s request

Important: the parent process must close clientfd, otherwise the web server
will have a file descriptor leak
I OS kernel imposes limit on number of open files per process
I Too many file descriptors open → can’t open any more files or sockets

Limiting number of processes

Before calling fork, web server calls wait_for_avail_proc:
void wait_for_avail_proc(void) {

toggle_sigchld(SIG_BLOCK);
while (g_num_procs >= MAX_PROCESSES) {

int wstatus;
wait(&wstatus);
if (WIFEXITED(wstatus) || WIFSIGNALED(wstatus)) {

g_num_procs--;
}

}
toggle_sigchld(SIG_UNBLOCK);

}

Calls wait if too many processes are currently running

Interrupted system calls

When a program receives a signal, it can interrupt the currently-executing
system call

Special handling is required for accept system call to wait for connection
from client:

int clientfd;
do {

clientfd = accept(serverfd, NULL, NULL);
} while (clientfd < 0 && errno == EINTR);
if (clientfd < 0) {

fatal("Error accepting client connection");
}

When errno is EINTR, it indicates that the system call was interrupted

Async-signal safety

While we’re talking about signals...

Because of the potential of signal handlers to introduce data races into the
program, some library functions aren’t safe to call from a signal handler

Good idea to know these: man signal-safety on Linux

Standard I/O routines (printf, scanf, etc.) are not async-signal safe /

Putting it together

In the mp_webserver directory:
$ gcc -o mp_webserver main.c webserver.c csapp.c -lpthread
$./mp_webserver 30000 ./site

Result
Visiting URL http://localhost:30000/index.html:

http://localhost:30000/index.html

	Concurrency with processes

