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Integer arithmetic



Integer arithmetic

I Integer representations based on fixed-size machine words are finite
I I.e., only a finite number of possible values can be represented
I For word with w bits, can represent 2w possible values

I So, we should expect some (potentially) strange results when doing
arithmetic using machine words

I These strange results can lead to surprising program behavior, including
security vulnerabilities



Addition of unsigned values

Addition of unsigned values
I Same idea as what you learned in grade school
I Start with least significant digit
I As needed, carry excess into next-most-significant digit



Addition of unsigned values (no overflow)

Example: 0110 + 0111

0
0110

+ 0111



Addition of unsigned values (no overflow)

Example: 0110 + 0111

00
0110

+ 0111
1 no carry



Addition of unsigned values (no overflow)

Example: 0110 + 0111

100
0110

+ 0111
01 carry 1



Addition of unsigned values (no overflow)

Example: 0110 + 0111

1000
0110

+ 0111
101 carry 1



Addition of unsigned values (no overflow)

Example: 0110 + 0111

01000
0110

+ 0111
1101 no carry



Addition of unsigned values (no overflow)

Example: 0110 + 0111

0110
+ 0111

1101 done



Overflow

I If the sum of w -bit (unsigned) integer values is too large to represent
using a w -bit word, overflow occurs

I Effective sum of w bit integers a and b is
(a + b) mod 2w



Addition of unsigned values (overflow)

Example: 1110 + 0111

0
1110

+ 0111



Addition of unsigned values (overflow)

Example: 1110 + 0111

00
1110

+ 0111
1 no carry



Addition of unsigned values (overflow)

Example: 1110 + 0111

100
1110

+ 0111
01 carry 1



Addition of unsigned values (overflow)

Example: 1110 + 0111

1100
1110

+ 0111
101 carry 1



Addition of unsigned values (overflow)

Example: 1110 + 0111

11100
1110

+ 0111
0101 carry 1



Addition of unsigned values (overflow)

Example: 1110 + 0111

11100
1110

+ 0111
10101

True sum is 10101 (21), effective sum is 101
(5) (note 21 mod 16 = 5)



Clicker quiz

Clicker quiz omitted from public slides



Addition of signed values

Useful property of two’s complement: addition is carried out exactly the same
way for signed values as for unsigned values



Signed addition example

Example: 0101 (5) + 1110 (-2)

0101
+ 1110



Signed addition example

Example: 0101 (5) + 1110 (-2)

0101
+ 1110

10011

After truncating (discarding high bit of
sum), effective sum is 0011 (3)



Signed overflow

What happens when sum of signed w -bit values can’t be represented?
I If sum exceeds 2w−1 − 1, it becomes negative (overflow)
I If sum is less than −2w−1, it becomes positive (negative overflow)



Signed addition example (overflow)

Example: 0100 (4) + 0101 (5)

0100
+ 0101



Signed addition example (overflow)

Example: 0100 (4) + 0101 (5)

0100
+ 0101

1001

Result is -7 (-8 + 1)



Signed addition example (negative overflow)

Example: 1100 (-4) + 1011 (-5)

1100
+ 1011



Signed addition example (negative overflow)

Example: 1100 (-4) + 1011 (-5)

1100
+ 1011

10111

Result (after truncating) is 7



Clicker quiz

Clicker quiz omitted from public slides



Two’s complement negation and subtraction

I Negation: if x is a two-complement integer value, −x can be computed
by inverting bits of x , then adding 1

I Why?
I Inverting all bits is equivalent to subtracting from a bitstring

consisting of all 1 bits
I A bitstring of all 1 bits has the value -1
I So, inverting the bits of x and adding 1 effectively means

−1 − x + 1 = 0 − x = −x
I Subtraction:

a − b = a + −b
I.e., to compute a − b, compute −b, then add −b to a
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Clicker quiz

Clicker quiz omitted from public slides



Integer arithmetic in C



Integer arithmetic in C

I C data types are “close to” the machine data types
I Understanding machine-level data representation will help you understand

C
I But, there are traps for the unwary!
I Certain operations in C are undefined behavior
I Program could do anything (bad)
I Compiler can (and often does) assume that undefined behavior will

never occur, leading to surprising “optimizations”
I Certain operations in C are implementation defined
I The compiler will document what the code will do, but it can vary

within a range of allowed behaviors



Shifts

I Shifts move the bits in a value some number of positions left or right
I Bits shifted out are discarded
I Bits shifted in could be 0 or 1 depending on operand type
I Can be used to multiply or divide a value by a power of 2
I Left shift by 1 bit: multiply by 2
I Right shift by 1 bit: divide by 2

I Typically faster than actual CPU integer multiply and divide instructions



Example unsigned shifts

Given declaration uint16_t x = 0x0FFF;

Expression Dec Hex Binary
x 4095 0FFF 0000111111111111

x << 1 8190 1FFE 0001111111111110
x << 5 65504 FFE0 1111111111100000
x >> 1 2047 07FF 0000011111111111
x >> 5 127 007F 0000000001111111



Example signed shifts

Given declarations:
int16_t x = 0x0FFF;
int16_t y = 0x8000;

Expression Dec1 Hex Binary
x 4095 0FFF 0000111111111111

x << 1 8190 1FFE 0001111111111110
x << 5 undefined
x >> 1 2047 07FF 0000011111111111
x >> 5 127 007F 0000000001111111

y -32768 8000 1000000000000000
y >> 1 implementation-defined

1Assuming two’s complement



Gotchas with signed shifts

I Left shifts into or past the sign bit are undefined
I Assuming 32-bit int values, 0x40000000 << 1 is undefined
I Undefined behavior means anything could happen when the program

attempts to perform this computation
I Right shifts could either replicate the sign bit (“arithmetic” shift) or shift

in 0 bits (“logical” shift)
I Assuming 32 bit int values, 0x80000000 >> 1 could yield either

0xC0000000 or 0x40000000
I This is implementation-defined behavior



Size conversions

What happens when integer values are converted to a different-sized
representation:
I Unsigned small to large, 0 bits added (value preserved)
I Signed small to large, sign bit duplicated (value preserved)
I Unsigned large to small, truncation (value could change)
I Signed large to small, truncation (value could change)



Signed-ness conversions

When signed and unsigned values are used in an expression (a) the signed
value is converted to unsigned (by reinterpreting its bits as an unsigned value),
(b) the result is unsigned

This can lead to surprising results!



Overflows (unsigned)

Overflow for unsigned integer types is defined in terms of wrapping:

unsigned x = UINT_MAX;
x++;
printf("%u\n", x);
This code is guaranteed to print “0”

unsigned x = 0;
x--;
printf("%u\n", x);
This code is guaranteed to print the
value of UINT_MAX



Overflows (signed)

Overflow for signed integer types is undefined!

That’s really bad!
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