
Lecture 19: Shared libraries

Philipp Koehn, David Hovemeyer

October 19, 2022

601.229 Computer Systems Fundamentals

Example code

I Example code for today is on the course website in dynload.zip

Shared libraries

Loading (Statically-linked) Executable Object Files

Kernel memory

User stack

Run time heap (created by
malloc)

Read/write segment
(.data / .bss)

Read-only code segment
(.init, .text., .rodata)

Stack pointer

Loaded from
executable

0

400000

ffffffff

Dynamic Linking Shared Libraries

I Once program is executed, loader calls dynamic linker
I Dynamic linker "loads" shared library
I Nothing is actually loaded
I Memory mapping: pretend it’s in memory

(operating system deals with mapping of RAM address)
I Much more about this when we cover virtual memory

Clicker quiz!

Clicker quiz omitted from public slides

Clicker quiz!

Clicker quiz omitted from public slides

Example run

Clicker quiz omitted from public slides

Dynamic Linking Shared Libraries

Kernel memory

User stack

Memory-mapped region
for shared libraries

Run time heap (created by
malloc)

Read/write segment
(.data / .bss)

Read-only code segment
(.init, .text., .rodata)

Stack pointer

Loaded from
executable

0

400000

ffffffff

Addresses in Shared Libraries

I Multiple processes use same shared library
I Idea: put it into a dedicated place in memory
I But
I there may be many libraries
I we may run out of address space

(or at least waste it)
I Instead: compile into position-independent code

Position-Independent Code

I No matter where the libraries is loaded into memory
→ distances between addresses are the same

I Global offset table
I table in data segment (relative position is known)
I contains absolute addresses of variables and functions1

I gets filled with correct values by dynamic linker
I Uses instruction point register (%rip)

1Sort of, we’ll discuss how functions work soon

Example

I Assume b is a global variable defined in a different executable object (e.g.,
a shared library), and our source code does b++;

I Global offset table (in data segment)
0 address of symbol a
1 address of symbol b
2 ...

I Generated assembly code
mov 0x2008b9(%rip), %rax
addl $1, (%rax)

I Distance between code line and GOT entry 1 is 0x2008b9 bytes
I First line of code loads actual address of variable
I Second line increases it by 1

Filling in GOT entries: references to data

I When an executable object is loaded, the dynamic linker eagerly
determines run-time addresses for all referenced global variables, and
stores them in the appropriate GOT entries

I Each loaded executable object (including shared libraries) has a symbol
table indicating relative offsets of code and data definitions

I The dynamic linker can use the symbol table information to determine the
run-time address of any code or data definition
I It knows the base address of each executable object, and the names and

offsets of every symbol definition within it
I So it’s capable of producing an address for any defined symbol

Filling in GOT entries: references to code (functions)

I What about finding the addresses of called functions?
I E.g., your code’s main function calls printf, which is in the libc

shared library
I This is way more complicated!
I Very brief explanation:
I Function addresses are resolved lazily
I Each (externally-defined) function has an entry in the GOT
I Initial address in the GOT calls into the PLT (procedure linkage table),

which invokes the dynamic loader to resolve the address of the called
function and store it in the GOT

I Subsequent calls load the function’s address from the GOT

Tools for Manipulating Object Files

AR Creates static libraries, and inserts, deletes, and extracts members
STRINGS Lists all printable strings
STRIP Deletes symbol table information
NM Lists symbols defined in symbol table
READELF Displays complete structure
OBJDUMP Displays all information, useful to disassemble code

Dynamic loading of shared libraries

Shared libraries

I Shared libraries are loaded into memory at runtime
I Loading and symbol resolution happens automatically when an executable

is linked against shared libraries
I E.g., every C program is linked against the C library (libc), so the

libc shared library is loaded automatically when the C program runs
I However, programs can also load shared libraries (and resolve symbols in

them) dynamically

Very brief overview of dynamic loading on Linux

I #include <dlfcn.h>
I Call dlopen to dynamically load a shared library
I Once a shared library has been loaded, call dlsym to get the addresses of

data and functions within it
I Call dlclose to unload the shared library
I Link the executable or shared library with -ldl

Function pointers

A function pointer is a pointer to a function. You can use them exactly as
though they were functions.

Example:
// Declare a pointer to a function returning int and taking
// a single const char * parameter.
int (*ptr)(const char *);

// Make the function pointer point to a compatible function.
ptr = puts;

// Use the pointer to call the function it points to.
ptr("Hello world");

Why dynamic loading is useful

Scenarios where dynamic loading of shared libraries is useful include
I Interpositioning to “redefine” functions
I Extending program capabilities using “plugins”

Interpositioning

I Sometimes it is useful to “redefine” library functions
I For debugging or tracing program behavior
I To change or extend the behavior of the function

I This is sometimes referred to as “instrumenting” the executable in which
functions are redefined by interpositioning

I “Interpositioning” means linking (statically or dynamically) functions with
the same names into the executable

I Dynamic loading allows the interposed function(s) to call the “real”
function(s)

I The LD_PRELOAD environment variable can be used to “inject” interposed
definitions into an arbitrary program

A C program

Code:
// myprog.c
#include <stdio.h>

int main(void) {
puts("Hello, world");
return 0;

}

Compiling and running normally:
$ gcc -g -Wall -Wextra -pedantic -std=gnu99 -fPIC -c myprog.c -o myprog.o
$ gcc -o myprog myprog.o
$./myprog
Hello, world

Instrumenting the puts function

Code for an instrumented version of puts:
// instr.c
#include <stdlib.h>
#include <dlfcn.h>

int (*real_puts)(const char *s);

int puts(const char *s) {
if (!real_puts) {

void *handle = dlopen("/lib/x86_64-linux-gnu/libc.so.6", RTLD_LAZY);
if (!handle) { exit(1); }
*(void **) (&real_puts) = dlsym(handle, "puts");
if (!real_puts) { exit(1); }

}
real_puts("This is the interposed version of puts!");
return real_puts(s);

}

Instrumenting the program

Compiling the instrumentation library:
$ gcc -g -Wall -Wextra -pedantic -std=gnu99 -fPIC -c instr.c -o instr.o
$ gcc -shared -nostdlib -o instr.so instr.o -ldl

Using the instrumentation library:
$./myprog
Hello, world
$ LD_PRELOAD=./instr.so ./myprog
This is the interposed version of puts!
Hello, world

Plugins

I A “plugin” is a shared library intended to extend the functionality of a
program

I Each plugin defines a standard set of functions
I “Host” program loads plugin share libraries dynamically, calls functions

Example plugin API

Example functions for plugins for an image-processing program:
const char *get_plugin_name(void);
const char *get_plugin_desc(void);
void *parse_arguments(int num_args, char *args[]);
struct Image *transform_image(struct Image *source, void *arg_data);

Each plugin defines its own versions of all of the required functions.

Host program loads plugin shared libraries and calls the functions as
appropriate.

ABI

ABI = “Application Binary Interface”

For systems implemented using dynamic loading, the components must agree
on the exact signatures of functions (parameters, return values) and the
formats of common data structures (like struct Image in the previous
example.)

Unexpected changes to function signatures or data layouts → plugins no
longer work correctly.

These common specifications are called an “ABI”.

	Shared libraries
	Dynamic loading of shared libraries

