### Lecture 4: Integer arithmetic

David Hovemeyer

September 4, 2024

601.229 Computer Systems Fundamentals



KID KA KE KIEK E VA G

# Integer arithmetic

- ▶ Integer representations based on fixed-size machine words are *finite*
- ▶ I.e., only a finite number of possible values can be represented
	- $\blacktriangleright$  For word with w bits, can represent 2<sup>w</sup> possible values
- $\triangleright$  So, we should expect some (potentially) strange results when doing arithmetic using machine words
- $\triangleright$  These strange results can lead to surprising program behavior, including security vulnerabilities

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - Y Q Q Q

Addition of unsigned values

- ▶ Same idea as what you learned in grade school
	- $\triangleright$  Start with least significant digit
	- ▶ As needed, carry excess into next-most-significant digit

**KORK ERKER ADAM ADA** 

Example:  $0110 + 0111$ 

 $\Omega$ 0110  $+$  0111

KID KA KE KIEK E VA G

Example:  $0110 + 0111$ 

**0**0 011**0** + 011**1**  $\overline{1}$  no carry

Example:  $0110 + 0111$ 

**1**00 01**1**0 + 01**1**1  $\overline{01}$  carry 1

#### Example:  $0110 + 0111$

**1**000 0**1**10 + 0**1**11  $\overline{101}$  carry 1

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q Q

Example:  $0110 + 0111$ 

**0**1000 **0**110 + **0**111  $\overline{1101}$  no carry

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - Y Q Q Q

Example:  $0110 + 0111$ 

0110  $+$  0111  $1101$  done

- $\triangleright$  If the sum of w-bit (unsigned) integer values is too large to represent using a *w*-bit word, overflow occurs
- $\triangleright$  Effective sum of w bit integers a and b is

 $(a + b) \mod 2^w$ 

KID KA KE KIEK E VA G

Example:  $1110 + 0111$ 

 $\Omega$ 1110  $+$  0111

KID KA KE KIEK E VA G

Example:  $1110 + 0111$ 

**0**0 111**0** + 011**1**  $\overline{1}$  no carry

#### Example:  $1110 + 0111$

**1**00 11**1**0 + 01**1**1  $\overline{01}$  carry 1

#### Example:  $1110 + 0111$

**1**100 1**1**10 + 0**1**11  $\overline{101}$  carry 1

#### Example:  $1110 + 0111$

**1**1100 **1**110 + **0**111 **0**101 carry 1

#### Example:  $1110 + 0111$

### 11100 1110  $+$  0111 10101

True sum is 10101 (21), effective sum is 101 (5) (note 21 mod  $16 = 5$ )

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - Y Q Q Q

Clicker quiz omitted from public slides



Useful property of two's complement: addition is carried out exactly the same way for signed values as for unsigned values

### Example:  $0101 (5) + 1110 (-2)$

### 0101 + 1110

KID KA KE KIEK E VA G

#### Example:  $0101$   $(5) + 1110$   $(-2)$

### 0101 1110 10011

After truncating (discarding high bit of sum), effective sum is 0011 (3)

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - Y Q Q Q

What happens when sum of signed w-bit values can't be represented?

- ▶ If sum exceeds  $2^{w-1} 1$ , it becomes negative (overflow)
- ▶ If sum is less than  $-2^{w-1}$ , it becomes positive (negative overflow)

KID KA DIK A BIK A BIK DA CA

#### Example:  $0100(4) + 0101(5)$

0100 0101

KID KA KE KIEK E VA G

Example:  $0100(4) + 0101(5)$ 

0100 + 0101 1001

Result is -7  $(-8 + 1)$ 

4 ロ > 4 団 > 4 ミ > 4 ミ > ミ = 0 Q Q

## Signed addition example (negative overflow)

### Example:  $1100 (-4) + 1011 (-5)$

1100 + 1011



```
Example: 1100 (-4) + 1011 (-5)
```
### 1100 + 1011 10111

Result (after truncating) is 7

**KORK EXTERNE PROVIDE** 

Clicker quiz omitted from public slides



 $\triangleright$  Negation: if x is a two-complement integer value,  $-x$  can be computed by inverting bits of  $x$ , then adding 1

 $\triangleright$  Negation: if x is a two-complement integer value,  $-x$  can be computed by inverting bits of  $x$ , then adding 1

 $\blacktriangleright$  Why?

▶ Negation: if x is a two-complement integer value,  $-x$  can be computed by inverting bits of  $x$ , then adding 1

- $\blacktriangleright$  Why?
	- ▶ Inverting all bits is equivalent to subtracting from a bitstring consisting of all 1 bits

**KORK ERKER ADAM ADA** 

- ▶ Negation: if x is a two-complement integer value,  $-x$  can be computed by inverting bits of  $x$ , then adding 1
	- $\blacktriangleright$  Why?
		- ▶ Inverting all bits is equivalent to subtracting from a bitstring consisting of all 1 bits

**KORK ERKER ADAM ADA** 

 $\triangleright$  A bitstring of all 1 bits has the value -1

- ▶ Negation: if x is a two-complement integer value,  $-x$  can be computed by inverting bits of  $x$ , then adding 1
	- $\blacktriangleright$  Why?
		- $\blacktriangleright$  Inverting all bits is equivalent to subtracting from a bitstring consisting of all 1 bits

**KORK ERKER ADAM ADA** 

- $\triangleright$  A bitstring of all 1 bits has the value -1
- $\triangleright$  So, inverting the bits of x and adding 1 effectively means

$$
-1 - x + 1 = 0 - x = -x
$$

▶ Negation: if x is a two-complement integer value,  $-x$  can be computed by inverting bits of  $x$ , then adding 1

- $\blacktriangleright$  Why?
	- $\blacktriangleright$  Inverting all bits is equivalent to subtracting from a bitstring consisting of all 1 bits
	- $\triangleright$  A bitstring of all 1 bits has the value -1
	- $\triangleright$  So, inverting the bits of x and adding 1 effectively means

$$
-1 - x + 1 = 0 - x = -x
$$

▶ Subtraction:

$$
a-b=a+-b
$$

I.e., to compute  $a - b$ , compute  $-b$ , then add  $-b$  to a

Clicker quiz omitted from public slides



# Integer arithmetic in C

- $\triangleright$  C data types are "close to" the machine data types
- ▶ Understanding machine-level data representation will help you understand  $\mathcal{C}$
- ▶ But, there are traps for the unwary!
	- ▶ Certain operations in C are *undefined behavior* 
		- ▶ Program could do anything (bad)
		- ▶ Compiler can (and often does) assume that undefined behavior will never occur, leading to surprising "optimizations"
	- ▶ Certain operations in C are *implementation defined* 
		- $\blacktriangleright$  The compiler will document what the code will do, but it can vary within a range of allowed behaviors
- $\triangleright$  Shifts move the bits in a value some number of positions left or right
- ▶ Bits shifted out are discarded
- ▶ Bits shifted in could be 0 or 1 depending on operand type
- $\triangleright$  Can be used to multiply or divide a value by a power of 2
	- $\blacktriangleright$  Left shift by 1 bit: multiply by 2
	- $\triangleright$  Right shift by 1 bit: divide by 2
- ▶ Typically faster than actual CPU integer multiply and divide instructions

**KORK EXTERNE PROVIDE** 

Given declaration  $uint16_t x = 0x0FFF;$ 



## Example signed shifts

Given declarations:

int16 t  $x = 0x0$ FFF;  $int16_t y = 0x8000;$ 



KID KA KE KIEK E VA G

### ▶ Left shifts into or past the sign bit are *undefined*

- ▶ Assuming 32-bit int values, 0x40000000 << 1 is undefined
- ▶ Undefined behavior means anything could happen when the program attempts to perform this computation
- $\triangleright$  Right shifts could either replicate the sign bit ("arithmetic" shift) or shift in 0 bits ("logical" shift)
	- $\triangleright$  Assuming 32 bit int values,  $\vert 0x80000000 \rangle$  >> 1 could yield either 0xC0000000 or 0x40000000

**KORKARA REPASA DA VOCA** 

 $\blacktriangleright$  This is *implementation-defined* behavior

What happens when integer values are converted to a different-sized representation:

**KORKARA REPASA DA VOCA** 

- ▶ Unsigned small to large, 0 bits added (value preserved)
- ▶ Signed small to large, sign bit duplicated (value preserved)
- ▶ Unsigned large to small, truncation (value could change)
- ▶ Signed large to small, truncation (value could change)

When signed and unsigned values are used in an expression (a) the signed value is converted to unsigned (by reinterpreting its bits as an unsigned value), (b) the result is unsigned

This can lead to surprising results!

Overflow for unsigned integer types is defined in terms of wrapping:

```
unsigned x = UINT_MAX;
x++:
printf("%u\n", x);
This code is guaranteed to print "0"
                                   unsigned x = 0;
                                   x--;printf("%u\n", x);
                                   This code is guaranteed to print the
                                   value of UINT_MAX
```
KID KA KE KIEK E VA G

Overflow for signed integer types is undefined!

That's really bad!

