
Lecture 5: Floating point

Philipp Koehn, David Hovemeyer

September 6, 2024

601.229 Computer Systems Fundamentals

Floating point numbers

Numbers

▶ So far, we only dealt with integers
▶ But there are other types of numbers

▶ Rational numbers (from ratio ≃ fraction)
▶ 3/4 = 0.75
▶ 10/3 = 3.33333333....

▶ Real numbers
▶ π = 3.14159265...
▶ e = 2.71828182...

Numbers

▶ So far, we only dealt with integers
▶ But there are other types of numbers
▶ Rational numbers (from ratio ≃ fraction)
▶ 3/4 = 0.75
▶ 10/3 = 3.33333333....

▶ Real numbers
▶ π = 3.14159265...
▶ e = 2.71828182...

Numbers

▶ So far, we only dealt with integers
▶ But there are other types of numbers
▶ Rational numbers (from ratio ≃ fraction)
▶ 3/4 = 0.75
▶ 10/3 = 3.33333333....

▶ Real numbers
▶ π = 3.14159265...
▶ e = 2.71828182...

Very Large Numbers

▶ Distance of sun and earth
150, 000, 000, 000 meters

▶ Scientific notation
1.5 × 1011 meters

▶ Another example: number of atoms in 12 gram of carbon-12 (1 mol)
6.022140857 × 1023

Binary Numbers in Scientific Notation

▶ Example binary number (π again)
11.0010010001

▶ Scientific notation
1.10010010001 × 21

▶ General form
1.x × 2y

Representation

▶ IEEE 754 floating point standard
▶ Uses 4 bytes

31 30 29 ... 24 23 22 21 ... 1 0
s exponent fraction

1 bit 8 bits 23 bits
▶ Exponent is offset with a bias of 127

e.g. 2−6 → exponent = -6 + 127 = 121

Conversion into Binary
▶ π = 3.14159265
▶ Number before period: 310 = 112
▶ Conversion of fraction .14159265

Digit Calculation
0.14159265 × 2 ↓

0 0.2831853 × 2 ↓
0 0.5663706 × 2 ↓
1 0.1327412 × 2 ↓
0 0.2654824 × 2 ↓
0 0.5309648 × 2 ↓
1 0.0619296 × 2 ↓
0 0.1238592 × 2 ↓
0 0.2477184 × 2 ↓
0 0.4954368 × 2 ↓
0 0.9908736 × 2 →

Digit Calculation
1 0.9817472 × 2 ↓
1 0.9634944 × 2 ↓
1 0.9269888 × 2 ↓
1 0.8539776 × 2 ↓
1 0.7079552 × 2 ↓
1 0.4159104 × 2 ↓
0 0.8318208 × 2 ↓
1 0.6636416 × 2 ↓
1 0.3272832 × 2 ↓
0 0.6545664 × 2 ↓
1 0.3091328 × 2

▶ Binary: 11.001001000011111101101

Conversion into Binary
▶ π = 3.14159265
▶ Number before period: 310 = 112
▶ Conversion of fraction .14159265

Digit Calculation
0.14159265 × 2 ↓

0 0.2831853 × 2 ↓
0 0.5663706 × 2 ↓
1 0.1327412 × 2 ↓
0 0.2654824 × 2 ↓
0 0.5309648 × 2 ↓
1 0.0619296 × 2 ↓
0 0.1238592 × 2 ↓
0 0.2477184 × 2 ↓
0 0.4954368 × 2 ↓
0 0.9908736 × 2 →

Digit Calculation
1 0.9817472 × 2 ↓
1 0.9634944 × 2 ↓
1 0.9269888 × 2 ↓
1 0.8539776 × 2 ↓
1 0.7079552 × 2 ↓
1 0.4159104 × 2 ↓
0 0.8318208 × 2 ↓
1 0.6636416 × 2 ↓
1 0.3272832 × 2 ↓
0 0.6545664 × 2 ↓
1 0.3091328 × 2

▶ Binary: 11.001001000011111101101

Conversion into Binary
▶ π = 3.14159265
▶ Number before period: 310 = 112
▶ Conversion of fraction .14159265

Digit Calculation
0.14159265 × 2 ↓

0 0.2831853

× 2 ↓
0 0.5663706 × 2 ↓
1 0.1327412 × 2 ↓
0 0.2654824 × 2 ↓
0 0.5309648 × 2 ↓
1 0.0619296 × 2 ↓
0 0.1238592 × 2 ↓
0 0.2477184 × 2 ↓
0 0.4954368 × 2 ↓
0 0.9908736 × 2 →

Digit Calculation
1 0.9817472 × 2 ↓
1 0.9634944 × 2 ↓
1 0.9269888 × 2 ↓
1 0.8539776 × 2 ↓
1 0.7079552 × 2 ↓
1 0.4159104 × 2 ↓
0 0.8318208 × 2 ↓
1 0.6636416 × 2 ↓
1 0.3272832 × 2 ↓
0 0.6545664 × 2 ↓
1 0.3091328 × 2

▶ Binary: 11.001001000011111101101

Conversion into Binary
▶ π = 3.14159265
▶ Number before period: 310 = 112
▶ Conversion of fraction .14159265

Digit Calculation
0.14159265 × 2 ↓

0 0.2831853 × 2 ↓
0 0.5663706

× 2 ↓
1 0.1327412 × 2 ↓
0 0.2654824 × 2 ↓
0 0.5309648 × 2 ↓
1 0.0619296 × 2 ↓
0 0.1238592 × 2 ↓
0 0.2477184 × 2 ↓
0 0.4954368 × 2 ↓
0 0.9908736 × 2 →

Digit Calculation
1 0.9817472 × 2 ↓
1 0.9634944 × 2 ↓
1 0.9269888 × 2 ↓
1 0.8539776 × 2 ↓
1 0.7079552 × 2 ↓
1 0.4159104 × 2 ↓
0 0.8318208 × 2 ↓
1 0.6636416 × 2 ↓
1 0.3272832 × 2 ↓
0 0.6545664 × 2 ↓
1 0.3091328 × 2

▶ Binary: 11.001001000011111101101

Conversion into Binary
▶ π = 3.14159265
▶ Number before period: 310 = 112
▶ Conversion of fraction .14159265

Digit Calculation
0.14159265 × 2 ↓

0 0.2831853 × 2 ↓
0 0.5663706 × 2 ↓
1 0.1327412

× 2 ↓
0 0.2654824 × 2 ↓
0 0.5309648 × 2 ↓
1 0.0619296 × 2 ↓
0 0.1238592 × 2 ↓
0 0.2477184 × 2 ↓
0 0.4954368 × 2 ↓
0 0.9908736 × 2 →

Digit Calculation
1 0.9817472 × 2 ↓
1 0.9634944 × 2 ↓
1 0.9269888 × 2 ↓
1 0.8539776 × 2 ↓
1 0.7079552 × 2 ↓
1 0.4159104 × 2 ↓
0 0.8318208 × 2 ↓
1 0.6636416 × 2 ↓
1 0.3272832 × 2 ↓
0 0.6545664 × 2 ↓
1 0.3091328 × 2

▶ Binary: 11.001001000011111101101

Conversion into Binary
▶ π = 3.14159265
▶ Number before period: 310 = 112
▶ Conversion of fraction .14159265

Digit Calculation
0.14159265 × 2 ↓

0 0.2831853 × 2 ↓
0 0.5663706 × 2 ↓
1 0.1327412 × 2 ↓
0 0.2654824 × 2 ↓
0 0.5309648 × 2 ↓
1 0.0619296 × 2 ↓
0 0.1238592 × 2 ↓
0 0.2477184 × 2 ↓
0 0.4954368 × 2 ↓
0 0.9908736 × 2 →

Digit Calculation
1 0.9817472 × 2 ↓
1 0.9634944 × 2 ↓
1 0.9269888 × 2 ↓
1 0.8539776 × 2 ↓
1 0.7079552 × 2 ↓
1 0.4159104 × 2 ↓
0 0.8318208 × 2 ↓
1 0.6636416 × 2 ↓
1 0.3272832 × 2 ↓
0 0.6545664 × 2 ↓
1 0.3091328 × 2

▶ Binary: 11.001001000011111101101

Encoding into Representation

▶ π

1.1001001000011111101101 × 21

▶ Encoding

Sign Exponent Fraction
0 10000000 1001001000011111101101

▶ Note: leading 1 in fraction is omitted

Clicker quiz!

Clicker quiz omitted from public slides

See the representation of a float

#include <stdio.h>

int main(void) {
float x;
scanf("%f", &x);
unsigned *p = (unsigned *) &x;

for (int i = 31; i >= 0; i--) {
printf("%c", (*p & (1 << i)) ? '1' : '0');
if (i == 31 || i == 23) { printf(" "); }

}
printf("\n");

return 0;
}

See the representation of a float

$ gcc explain.c
$ echo '-18.8203125' | ./a.out
1 10000011 00101101001000000000000

Special Cases

▶ Zero

▶ Infinity (1/0)
▶ Negative infinity (-1/0)
▶ Not a number (0/0 or ∞ − ∞)

Special Cases

▶ Zero
▶ Infinity (1/0)
▶ Negative infinity (-1/0)

▶ Not a number (0/0 or ∞ − ∞)

Special Cases

▶ Zero
▶ Infinity (1/0)
▶ Negative infinity (-1/0)
▶ Not a number (0/0 or ∞ − ∞)

Encoding

Exponent Fraction Object

0 0 zero
0 >0 denormalized number

1-254 anything floating point number
255 0 infinity
255 >0 NaN (not a number)

(denormalized number: 0.x × 2−126)

Clicker quiz!

Clicker quiz omitted from public slides

Double Precision

▶ Single precision = 4 bytes
Sign Exponent Fraction
1 bit 8 bits 23 bits

▶ Double precision = 8 bytes
Sign Exponent Fraction
1 bit 11 bits 52 bits

Addition

Addition with Scientific Notation

▶ Decimal example, with 4 significant digits in encoding
▶ Example

0.1610 + 99.99
▶ In scientific notation

1.610 × 10−1 + 9.999 × 101

▶ Bring lower number on same exponent as higher number
0.01610 × 101 + 9.999 × 101

Addition with Scientific Notation

▶ Decimal example, with 4 significant digits in encoding
▶ Example

0.1610 + 99.99
▶ In scientific notation

1.610 × 10−1 + 9.999 × 101

▶ Bring lower number on same exponent as higher number
0.01610 × 101 + 9.999 × 101

Addition with Scientific Notation

▶ Round to 4 significant digits
0.016 × 101 + 9.999 × 101

▶ Add fractions
0.016 + 9.999 = 10.015

▶ Adjust exponent
10.015 × 101 = 1.0015 × 102

▶ Round to 4 significant digits
1.002 × 102

Addition with Scientific Notation

▶ Round to 4 significant digits
0.016 × 101 + 9.999 × 101

▶ Add fractions
0.016 + 9.999 = 10.015

▶ Adjust exponent
10.015 × 101 = 1.0015 × 102

▶ Round to 4 significant digits
1.002 × 102

Addition with Scientific Notation

▶ Round to 4 significant digits
0.016 × 101 + 9.999 × 101

▶ Add fractions
0.016 + 9.999 = 10.015

▶ Adjust exponent
10.015 × 101 = 1.0015 × 102

▶ Round to 4 significant digits
1.002 × 102

Addition with Scientific Notation

▶ Round to 4 significant digits
0.016 × 101 + 9.999 × 101

▶ Add fractions
0.016 + 9.999 = 10.015

▶ Adjust exponent
10.015 × 101 = 1.0015 × 102

▶ Round to 4 significant digits
1.002 × 102

Binary Floating Point Addition

▶ Numbers
0.510 = 1

210

= 1
21 10 = 0.12 = 1.0002 × 2−1

−0.437510 = − 7
1610 = − 7

24 10 = 0.01112 = −1.1102 × 2−2

▶ Bring lower number on same exponent as higher number
−1.110 × 2−2 = −0.111 × 2−1

▶ Add the fractions
1.0002 × 2−1 + (−0.111 × 2−1) = 0.001 × 2−1

▶ Adjust exponent
0.001 × 2−1 = 1.000 × 2−4

Binary Floating Point Addition

▶ Numbers
0.510 = 1

210 = 1
21 10

= 0.12 = 1.0002 × 2−1

−0.437510 = − 7
1610 = − 7

24 10 = 0.01112 = −1.1102 × 2−2

▶ Bring lower number on same exponent as higher number
−1.110 × 2−2 = −0.111 × 2−1

▶ Add the fractions
1.0002 × 2−1 + (−0.111 × 2−1) = 0.001 × 2−1

▶ Adjust exponent
0.001 × 2−1 = 1.000 × 2−4

Binary Floating Point Addition

▶ Numbers
0.510 = 1

210 = 1
21 10 = 0.12

= 1.0002 × 2−1

−0.437510 = − 7
1610 = − 7

24 10 = 0.01112 = −1.1102 × 2−2

▶ Bring lower number on same exponent as higher number
−1.110 × 2−2 = −0.111 × 2−1

▶ Add the fractions
1.0002 × 2−1 + (−0.111 × 2−1) = 0.001 × 2−1

▶ Adjust exponent
0.001 × 2−1 = 1.000 × 2−4

Binary Floating Point Addition

▶ Numbers
0.510 = 1

210 = 1
21 10 = 0.12 = 1.0002 × 2−1

−0.437510 = − 7
1610 = − 7

24 10 = 0.01112 = −1.1102 × 2−2

▶ Bring lower number on same exponent as higher number
−1.110 × 2−2 = −0.111 × 2−1

▶ Add the fractions
1.0002 × 2−1 + (−0.111 × 2−1) = 0.001 × 2−1

▶ Adjust exponent
0.001 × 2−1 = 1.000 × 2−4

Binary Floating Point Addition

▶ Numbers
0.510 = 1

210 = 1
21 10 = 0.12 = 1.0002 × 2−1

−0.437510 = − 7
1610

= − 7
24 10 = 0.01112 = −1.1102 × 2−2

▶ Bring lower number on same exponent as higher number
−1.110 × 2−2 = −0.111 × 2−1

▶ Add the fractions
1.0002 × 2−1 + (−0.111 × 2−1) = 0.001 × 2−1

▶ Adjust exponent
0.001 × 2−1 = 1.000 × 2−4

Binary Floating Point Addition

▶ Numbers
0.510 = 1

210 = 1
21 10 = 0.12 = 1.0002 × 2−1

−0.437510 = − 7
1610 = − 7

24 10 = 0.01112

= −1.1102 × 2−2

▶ Bring lower number on same exponent as higher number
−1.110 × 2−2 = −0.111 × 2−1

▶ Add the fractions
1.0002 × 2−1 + (−0.111 × 2−1) = 0.001 × 2−1

▶ Adjust exponent
0.001 × 2−1 = 1.000 × 2−4

Binary Floating Point Addition

▶ Numbers
0.510 = 1

210 = 1
21 10 = 0.12 = 1.0002 × 2−1

−0.437510 = − 7
1610 = − 7

24 10 = 0.01112 = −1.1102 × 2−2

▶ Bring lower number on same exponent as higher number
−1.110 × 2−2 = −0.111 × 2−1

▶ Add the fractions
1.0002 × 2−1 + (−0.111 × 2−1) = 0.001 × 2−1

▶ Adjust exponent
0.001 × 2−1 = 1.000 × 2−4

Binary Floating Point Addition

▶ Numbers
0.510 = 1

210 = 1
21 10 = 0.12 = 1.0002 × 2−1

−0.437510 = − 7
1610 = − 7

24 10 = 0.01112 = −1.1102 × 2−2

▶ Bring lower number on same exponent as higher number
−1.110 × 2−2 = −0.111 × 2−1

▶ Add the fractions
1.0002 × 2−1 + (−0.111 × 2−1) = 0.001 × 2−1

▶ Adjust exponent
0.001 × 2−1 = 1.000 × 2−4

Binary Floating Point Addition

▶ Numbers
0.510 = 1

210 = 1
21 10 = 0.12 = 1.0002 × 2−1

−0.437510 = − 7
1610 = − 7

24 10 = 0.01112 = −1.1102 × 2−2

▶ Bring lower number on same exponent as higher number
−1.110 × 2−2 = −0.111 × 2−1

▶ Add the fractions
1.0002 × 2−1 + (−0.111 × 2−1) = 0.001 × 2−1

▶ Adjust exponent
0.001 × 2−1 = 1.000 × 2−4

Binary Floating Point Addition

▶ Numbers
0.510 = 1

210 = 1
21 10 = 0.12 = 1.0002 × 2−1

−0.437510 = − 7
1610 = − 7

24 10 = 0.01112 = −1.1102 × 2−2

▶ Bring lower number on same exponent as higher number
−1.110 × 2−2 = −0.111 × 2−1

▶ Add the fractions
1.0002 × 2−1 + (−0.111 × 2−1) = 0.001 × 2−1

▶ Adjust exponent
0.001 × 2−1 = 1.000 × 2−4

Flowchart

start

done

compare components:
shift smaller number to right until

exponents match

add fractions

normalize the sum:
either increase or decrease exponent

round fraction to
appropriate number of bits

overflow
underflow? Exception

normalized?
no

no

yes

yes

Multiplication

Multiplication with Scientific Notation

▶ Example: multiply 1.110 × 1010 and 9.200 × 10−5

1.110 × 1010 × 9.200 × 10−5

1.110 × 9.200 × 10−5 × 1010

1.110 × 9.200 × 10−5+10

▶ Add exponents
−5 + 10 = 5

▶ Multiply fractions
1.110 × 9.200 = 10.212

▶ Adjust exponent
10.212 × 105 = 1.0212 × 106

Multiplication with Scientific Notation

▶ Example: multiply 1.110 × 1010 and 9.200 × 10−5

1.110 × 1010 × 9.200 × 10−5

1.110 × 9.200 × 10−5 × 1010

1.110 × 9.200 × 10−5+10

▶ Add exponents
−5 + 10 = 5

▶ Multiply fractions
1.110 × 9.200 = 10.212

▶ Adjust exponent
10.212 × 105 = 1.0212 × 106

Multiplication with Scientific Notation

▶ Example: multiply 1.110 × 1010 and 9.200 × 10−5

1.110 × 1010 × 9.200 × 10−5

1.110 × 9.200 × 10−5 × 1010

1.110 × 9.200 × 10−5+10

▶ Add exponents
−5 + 10 = 5

▶ Multiply fractions
1.110 × 9.200 = 10.212

▶ Adjust exponent
10.212 × 105 = 1.0212 × 106

Multiplication with Scientific Notation

▶ Example: multiply 1.110 × 1010 and 9.200 × 10−5

1.110 × 1010 × 9.200 × 10−5

1.110 × 9.200 × 10−5 × 1010

1.110 × 9.200 × 10−5+10

▶ Add exponents
−5 + 10 = 5

▶ Multiply fractions
1.110 × 9.200 = 10.212

▶ Adjust exponent
10.212 × 105 = 1.0212 × 106

Multiplication with Scientific Notation

▶ Example: multiply 1.110 × 1010 and 9.200 × 10−5

1.110 × 1010 × 9.200 × 10−5

1.110 × 9.200 × 10−5 × 1010

1.110 × 9.200 × 10−5+10

▶ Add exponents
−5 + 10 = 5

▶ Multiply fractions
1.110 × 9.200 = 10.212

▶ Adjust exponent
10.212 × 105 = 1.0212 × 106

Multiplication with Scientific Notation

▶ Example: multiply 1.110 × 1010 and 9.200 × 10−5

1.110 × 1010 × 9.200 × 10−5

1.110 × 9.200 × 10−5 × 1010

1.110 × 9.200 × 10−5+10

▶ Add exponents
−5 + 10 = 5

▶ Multiply fractions
1.110 × 9.200 = 10.212

▶ Adjust exponent
10.212 × 105 = 1.0212 × 106

Multiplication with Scientific Notation

▶ Example: multiply 1.110 × 1010 and 9.200 × 10−5

1.110 × 1010 × 9.200 × 10−5

1.110 × 9.200 × 10−5 × 1010

1.110 × 9.200 × 10−5+10

▶ Add exponents
−5 + 10 = 5

▶ Multiply fractions
1.110 × 9.200 = 10.212

▶ Adjust exponent
10.212 × 105 = 1.0212 × 106

Binary Floating Point Multiplication

▶ Example
1.000 × 2−1 × −1.110 × 2−2

▶ Add exponents
−1 + (−2) = −3

▶ Multiply fractions
1.000 × −1.110 = −1.110

1000 × 1110 = 1110000

−1.110000
▶ Adjust exponent (not needed)

−1.110 × 2−3

Binary Floating Point Multiplication

▶ Example
1.000 × 2−1 × −1.110 × 2−2

▶ Add exponents
−1 + (−2) = −3

▶ Multiply fractions
1.000 × −1.110 = −1.110

1000 × 1110 = 1110000

−1.110000
▶ Adjust exponent (not needed)

−1.110 × 2−3

Binary Floating Point Multiplication

▶ Example
1.000 × 2−1 × −1.110 × 2−2

▶ Add exponents
−1 + (−2) = −3

▶ Multiply fractions
1.000 × −1.110 = −1.110

1000 × 1110 = 1110000

−1.110000
▶ Adjust exponent (not needed)

−1.110 × 2−3

Binary Floating Point Multiplication

▶ Example
1.000 × 2−1 × −1.110 × 2−2

▶ Add exponents
−1 + (−2) = −3

▶ Multiply fractions
1.000 × −1.110 = −1.110

1000 × 1110 = 1110000

−1.110000
▶ Adjust exponent (not needed)

−1.110 × 2−3

Binary Floating Point Multiplication

▶ Example
1.000 × 2−1 × −1.110 × 2−2

▶ Add exponents
−1 + (−2) = −3

▶ Multiply fractions
1.000 × −1.110 = −1.110

1000 × 1110 = 1110000

−1.110000

▶ Adjust exponent (not needed)
−1.110 × 2−3

Binary Floating Point Multiplication

▶ Example
1.000 × 2−1 × −1.110 × 2−2

▶ Add exponents
−1 + (−2) = −3

▶ Multiply fractions
1.000 × −1.110 = −1.110

1000 × 1110 = 1110000

−1.110000
▶ Adjust exponent (not needed)

−1.110 × 2−3

Flowchart

start

done

add exponents

multiply fractions

normalize the product:
either increase or decrease exponent

round fraction to
appropriate number of bits

overflow
underflow? Exception

normalized?no

no

yes

yes

set sign

	Floating point numbers
	Addition
	Multiplication

