
Lecture 34: Bonus topics

Philipp Koehn, David Hovemeyer

December 4, 2024

601.229 Computer Systems Fundamentals



Outline

▶ Systems courses
▶ GPU programming
▶ Virtualization and containers
▶ Digital circuits
▶ Compilers

Code examples on web page: bonus.zip



Systems courses



Systems courses

▶ One of the main goals of CSF is to prepare you to take the upper level
systems courses

▶ So, what are (some of) these courses?
▶ Computer Networks (601.414) (*)
▶ Software Defined Networks (601.413) (*)
▶ Operating Systems (601.418) (*)
▶ Cloud Computing (601.419)
▶ Parallel Computing for Data Science (601.420)

(*) Offered Spring 2025



601.414 Computer Networks

▶ Network protocols (e.g., IP) and routing
▶ Transport protocols (e.g., TCP)
▶ Link layer protocols
▶ Application protocols and system-level network APIs
▶ Learn how networks really work at various scales



601.413 Software Defined Networks

“Software-Defined Networks (SDN) enable programmability of data networks and hence
rapid introduction of new services. They use software-based controllers to communicate
with underlying hardware infrastructure and direct traffic on a network. This model differs
from that of traditional networks, which use dedicated hardware devices (i.e., routers and
switches) to control network traffic. This technology is becoming a key part of web scale
networks (at companies like Google and Amazon) and 5G/6G networks. Its importance will
keep on growing. Many of today’s services and applications, especially when they involve
the cloud, could not function without SDN. SDN allows data to move easily between
distributed locations, which is critical for cloud applications. A major focus will be on how
this technology will be used in 5G and 6G Networks. The course will cover basics of SDN,
ongoing research in this area, and the industrial deployments.”

Note: 601.414 Computer Networks is a prerequisite



601.418 Operating Systems

▶ Process/thread scheduling, multiprogramming
▶ Virtual memory
▶ Filesystems
▶ “Course work includes the implementation of operating systems

techniques and routines, and critical parts of a small but functional
operating system.”

▶ Opinion: operating systems are incredibly interesting and fun



601.419 Cloud Computing

▶ “Cloud” = presenting data storage or computation as a service over the
network

▶ Cloud infrastructure: virtual servers, cloud services
▶ All “internet-scale” applications are built using cloud technology
▶ Note: 601.414 Computer Networks is a prerequisite



601.420 Parallel Computing for Data Science

▶ Use multiple processors to speed up large computations
▶ Often, large computations will have large amounts of data: storage and

transfer must be considered
▶ Making parallel computation work:
▶ Designing parallel algorithms
▶ Using parallel APIs and environments to run parallel programs

▶ “This course studies parallelism in data science, drawing examples from
data analytics, statistical programming, and machine learning. It focuses
mostly on the Python programming ecosystem but will use C/C++ to
accelerate Python and Java to explore shared-memory threading. It
explores parallelism at all levels, including instruction level parallelism
(pipelining and vectorization), shared-memory multicore, and distributed
computing.”



GPU programming



3D graphics

Rendering 3D graphics requires significant computation:
▶ Geometry: determine visible surfaces based on geometry of 3D shapes and

position of camera
▶ Rasterization: determine pixel colors based on surface, texture, lighting

A GPU is a specialized processor for doing these computations fast

GPU computation: use the GPU for general-purpose computation



Streaming multiprocessor

▶ Fetches instruction (I-Cache)
▶ Has to apply it over a vector of data
▶ Each vector element is processed in one thread

(MT Issue)
▶ Thread is handled by scalar processor (SP)
▶ Special function units (SFU)



Flynn’s taxonomy

▶ SISD (single instruction, single data)
▶ uni-processors (most CPUs until 1990s)

▶ MIMD (multi instruction, multiple data)
▶ all modern CPUs
▶ multiple cores on a chip
▶ each core runs instructions that operate on their own data

▶ SIMD (single instruction, multiple data)
▶ Streaming Multi-Processors (e.g., GPUs)
▶ multiple cores on a chip
▶ same instruction executed on different data



GPU architecture



GPU programming

▶ If you have an application where
▶ Data is regular (e.g., arrays)
▶ Computation is regular (e.g., same computation is performed on many

array elements)
then doing the computation on the GPU is likely to be much faster than
doing the computation on the CPU

▶ Issues:
▶ GPU has its own instruction set (need a compiler)
▶ GPU has its own memory (need to allocate buffers on GPU, copy data

between host memory and GPU memory)



Options for GPU programming

▶ OpenCL (https://www.khronos.org/opencl/)
▶ Advantage: device agnostic (supported by multiple vendors)
▶ Disadvantage: complicated

▶ CUDA (https://developer.nvidia.com/cuda-toolkit)
▶ Advantage: fairly straightforward to use (dialect of C)
▶ Disadvantage: only supports NVIDIA hardware

https://www.khronos.org/opencl/
https://developer.nvidia.com/cuda-toolkit


Application: image processing

▶ Gaussian blur: pixels of result image are weighted average of NxN block
of surrounding pixels

▶ Just a straightforward 2D array problem
▶ On the GPU, a kernel function will compute result pixel values in parallel
▶ A kernel function will compute a result pixel value
▶ Kernel function invocations for each combination of block coordinate and

thread number
▶ A “block” typically specifies an array element or range of array elements
▶ Each block spawns some number of threads

▶ We’ll implement this using CUDA (see blur.cu)



Core (per-pixel) computation

// x/y are pixel coordinates, in is original image,
// result is array of computed color component values
unsigned filter_index = 0;

for (int i = y - FILTER_WIDTH/2; i <= y + FILTER_WIDTH/2; i++) {
for (int j = x - FILTER_WIDTH/2; j <= x + FILTER_WIDTH/2; j++) {

if (i >= 0 && i < h && j >= 0 && j < w) {
int index = i*w + j;
uint32_t orig_pixel = in[index];
float fac = filter[filter_index];
result[0] += (RED(orig_pixel) * fac);
result[1] += (GREEN(orig_pixel) * fac);
result[2] += (BLUE(orig_pixel) * fac);
weight_sum += fac;

}
filter_index++;

}
}



Normalize, clamp, compute result pixel

// out is result image
for (int i = 0; i < 3; i++) {

// normalize
result[i] /= weight_sum;
// clamp to range 0..255
if (result[i] < 0) {

result[i] = 0;
} else if (result[i] > 255) {

result[i] = 255;
}

}

uint32_t transformed_pixel = RGBA(
(unsigned)result[0], (unsigned)result[1], (unsigned)result[2],
ALPHA(in[index])

);
out[index] = transformed_pixel;



Execute using CPU

void execute_blur(struct Image *img, struct Image *out, float *filter) {
for (unsigned i = 0; i < img->height; i++) {

for (unsigned j = 0; j < img->width; j++) {
// ...per-pixel computation...

}
}

}



Execute using GPU
void execute_blur_cuda(struct Image *img, struct Image *result_image,

float *filter) {
// ...allocate device buffers, copy host data to device...

int grid_w = img->width / THREADS_PER_BLOCK;
if (img->width % THREADS_PER_BLOCK != 0) {

grid_w++;
}
int grid_h = img->height;

dim3 grid(grid_w, grid_h);

// invoke the kernel!
cuBlur<<<grid, THREADS_PER_BLOCK>>>(

dev_imgdata, dev_filter, dev_imgdata_out, img->width, img->height
);

// ...copy device buffers back to host...
}



GPU kernel function

__global__ void cuBlur(uint32_t *in, float *filter, uint32_t *out,
int w, int h)

{
// pixel to compute
int x = blockIdx.x * THREADS_PER_BLOCK + threadIdx.x;

if (x < w) {
int y = blockIdx.y;

// ...per-pixel computation...
}

}



Experiment

▶ acadia.png is a 3840x2160 PNG image
▶ CPU is Core i5-4590, GPU is GeForce GT 1030
▶ Time to perform image processing measured using gettimeofday

$ ./blur cpu acadia.png out.png
Computation completed in 9.290 seconds
$ ./blur gpu acadia.png out2.png
3 GPU processors, 1024 max threads per block
Computation completed in 0.263 seconds

CPU code could have been optimized better, but still, a very nice performance
boost



Virtualization and containers



Running an application program

An application program will run correctly only when:
▶ It is run on the correct kind of processor
▶ It is run on the correct operating system
▶ The correct runtime libraries are available

Let’s assume that you have the right processor, but not necessarily the right
OS and libraries

What to do?



Virtualization

One solution is virtualization
▶ Create a hard disk image containing the operating system, all required

libraries and software components, and the application
▶ Run this OS image in a hypervisor



Hypervisor

▶ The hypervisor emulates the hardware of a computer, but it’s really just a
program
▶ The hypervisor is the “host”
▶ The OS image containing the application is the “guest”

▶ How it works:
▶ Modern CPUs have special instructions and execution modes to make

this reasonably efficient
▶ The guest’s kernel mode is really executing in user mode
▶ System instructions executed by the guest OS kernel (e.g., reloading

the page directory address register) trap to the hypervisor
▶ Hypervisor emulates hardware devices (storage, display, network

adapter, etc.)



Disadvantages of virtualization

▶ Virtualization is somewhat heavyweight
▶ Significant duplication in code, data structures between hypervisor and

guest OS kernel



Containers

▶ An “operating system” is:
▶ A kernel (e.g., the Linux kernel) providing a system call API
▶ Supporting programs and libraries

▶ In general, the OS kernel will have a high degree of backwards
compatibility
▶ So, it is the supporting programs and libraries that are the most

important application dependency
▶ Container: an isolated environment in which arbitrary applications and

libraries can be run
▶ Can be configured to have its own filesystem namespace, process id

namespace, network interface, resource limits, etc.
▶ But: there is only one kernel serving all processes (including processes

running inside a container)



Docker

▶ Docker (https://www.docker.com/) is a set of tools and an ecosystem
for building OS images to run inside a Linux container

▶ Uses layered filesystems
▶ Base layers are for the OS executables and libraries (e.g., Ubuntu)
▶ You add your application files “on top” of the base OS layer

▶ A Docker image can be easily deployed to an arbitrary server
▶ And you don’t need to worry about availability or compatibility of

libraries, because they’re part of your Docker image

https://www.docker.com/


Digital circuits



How do computers actually work?

▶ Computers are digital circuits
▶ Volage levels (high and low) represent true/false
▶ or 1/0

▶ Logic gates take 1 or more input voltages, and produce an output voltage
that is a boolean function on the input voltages



Learn by doing!

▶ We will barely scratch the surface of this topic
▶ But: this is a topic you can explore on your own
▶ How to do it:
▶ Download Logisim evolution

(https://github.com/logisim-evolution/logisim-evolution)
▶ Build circuits, test their behavior

▶ Example Logisim files are in the example code

https://github.com/logisim-evolution/logisim-evolution


AND gate

Output is 1 IFF inputs are both 1



NAND gate

Output is 1 IFF inputs are not both 1 (“not AND”)



OR gate

Output is 1 IFF either input is 1



NOR gate

Output is 1 IFF inputs neither input is 1 (“not OR”)



XOR gate

Output is 1 IFF exactly 1 input is 1 (“exclusive OR”)



Two bit adder



Combinational vs. sequential logic

▶ Previous examples are combinational logic
▶ Mapping of inputs to outputs is a mathematical function
▶ Digital circuits that have feedback paths can implement sequential logic:

there is “state” that can change



SR latch

Normally, S and R inputs should both be set to 1
▶ Pulse S to 0 and back to 1 to change Q output to 1
▶ Pulse R to 0 and back to 1 to change Q output to 0
▶ NotQ output is always the inverse of Q

This is a 1-bit memory!



Building a microcomputer

If you know how to design digital circuits, you can build an actual computer



Compilers



Compilers

▶ We know that writing assembly language is challenging
▶ A compiler is a program that automates the generation of assembly

language
▶ 601.428 Compilers and Interpreters
▶ Lexical analysis and parsing
▶ Semantic analysis
▶ Code generation
▶ Program analysis
▶ Code optimization

▶ Offered in Fall 2025 (planned)



Compiler bootstrapping

▶ When a compiler is implemented in the same source language that it
accepts as input, it can be self-hosting

▶ E.g., let’s say that you write a C compiler in C
▶ Build it using gcc, then use the resulting compiler executable to “compile

itself“
▶ This “bootstrapping” process is typical for new compiler implementations

of existing source languages
▶ When implementing a compiler for a completely new language, you must

first implement a compiler or interpreter using a different language
▶ For example, the first version of the Rust compiler was written in OCaml
▶ This allowed the bootstrapping of a later version which was written in

Rust


	Systems courses
	GPU programming
	Virtualization and containers
	Digital circuits
	Compilers

