
Lecture 24: Virtual Memory III

Philipp Koehn

October 29, 2025

601.229 Computer Systems Fundamentals



More refinements



Refinements

▶ On-CPU cache
→ integrate cache and virtual memory

▶ Slow look-up time
→ use translation lookahead buffer (TLB)

▶ Huge address space
→ multi-level page table

▶ Putting it all together



Page Table Size

▶ Example
▶ 32 bit address space: 4GB
▶ Page size: 4KB
▶ Size of page table entry: 4 bytes
→ Number of pages: 1M
→ Size of page table: 4MB

▶ Recall: one page table per process
▶ Very wasteful: most of the address space is not used



2-Level Page Table

L2 PT 0
L2 PT 1

null
null
null

Valid Level 2 page table

Level 1
page table

null
null
null

L2 PT 8
null
null

PTE 0

PTE 1023

Valid Physical page

Level 2
page table

Physical
memory

PTE 0

PTE 1023

Valid Physical page

PTE 1023

Valid Physical page



Multi-Level Page Table

▶ Our example: 1M entries
▶ 2-level page table

→ each level 1K entry (1K2=1M)
▶ 4-level page table

→ each level 32 entry (324=1M)



Clicker quiz!

Clicker quiz omitted from public slides



Refinements

▶ On-CPU cache
→ integrate cache and virtual memory

▶ Slow look-up time
→ use translation lookahead buffer (TLB)

▶ Huge address space
→ multi-level page table

▶ Putting it all together



Virtual Address

CPU

VPN VPO

TLBT TLBI

…
TLB

PPN PPOVPN1 VPN2 VPN3 VPN4

PTEPTEPTEPTE

CR3

CT CI CO

…
L1 Cache

Data RAM

L1 hit L1 miss

TLB hit
TLB 
miss

Virtual address



Translation Lookup Buffer

CPU

VPN VPO

TLBT TLBI

…
TLB

PPN PPOVPN1 VPN2 VPN3 VPN4

PTEPTEPTEPTE

CR3

CT CI CO

…
L1 Cache

Data RAM

L1 hit L1 miss

TLB hit
TLB 
miss

Virtual address



Compose Address

CPU

VPN VPO

TLBT TLBI

…
TLB

PPN PPOVPN1 VPN2 VPN3 VPN4

PTEPTEPTEPTE

CR3

CT CI CO

…
L1 Cache

Data RAM

L1 hit L1 miss

TLB hit
TLB 
miss

Virtual address



L1 Cache Lookup

CPU

VPN VPO

TLBT TLBI

…
TLB

PPN PPOVPN1 VPN2 VPN3 VPN4

PTEPTEPTEPTE

CR3

CT CI CO

…
L1 Cache

Data RAM

L1 hit L1 miss

TLB hit
TLB 
miss

Virtual address



Return Data From L1 Cache

CPU

VPN VPO

TLBT TLBI

…
TLB

PPN PPOVPN1 VPN2 VPN3 VPN4

PTEPTEPTEPTE

CR3

CT CI CO

…
L1 Cache

Data RAM

L1 hit L1 miss

TLB hit
TLB 
miss

Virtual address



Translation Lookup Buffer Miss

CPU

VPN VPO

TLBT TLBI

…
TLB

PPN PPOVPN1 VPN2 VPN3 VPN4

PTEPTEPTEPTE

CR3

CT CI CO

…
L1 Cache

Data RAM

L1 hit L1 miss

TLB hit
TLB 
miss

Virtual address



L1 Cache Miss

CPU

VPN VPO

TLBT TLBI

…
TLB

PPN PPOVPN1 VPN2 VPN3 VPN4

PTEPTEPTEPTE

CR3

CT CI CO

…
L1 Cache

Data RAM

L1 hit L1 miss

TLB hit
TLB 
miss

Virtual address



Core i7



Chip Layout

L1 data cache
32 KB, 8-way

L1 instruction cache
32 KB, 8-way

L2 unified cache
256 KB, 8-way

Registers Instruction
fetch

L1 data TLB
64 entries, 4-way

L1 instruction TLB
128 entries, 4-way

MMU
(address translation)

L2 unified TLB
512 entries, 4-way

L3 unified cache
8 MB, 16-way

(shared by all cores)

DDR3 memory 
controller

(shared by all cores)

DDR3 memory

Single Core

Chip with 4 cores



Sizes

▶ Virtual memory: 48 bit (→ 248 = 256TB address space)
▶ Physical memory: 52 bit (→ 252 = 4PB address space)
▶ Page size: 12 bit (→ 212 = 4KB)

⇒ 236 = 64G entries, split in 4 levels (512 entries each)
▶ Translation lookup buffer (TLB): 4-way associative, 16 entries
▶ L1 cache: 8-way associative, 64 sets, 64 byte blocks (32 KB)
▶ L2 cache: 8-way associative, 512 sets, 64 byte blocks (256 KB)
▶ L3 cache: 16-way associative, 8K sets, 64 byte blocks (8 MB)



Linux



Big Picture

▶ Close co-operation between hardware and software
▶ Each process has its own virtual address space, page table
▶ Translation look-up buffer

when switching processes → flush
▶ Page table

when switching processes → update pointer to top-level page table
▶ Page tables are always in physical memory

→ pointers to page table do not require translation



Handling Page Faults

▶ Page faults trigger an exception (hardware)
▶ Exception is handled by software (Linux kernel)
▶ Kernel must determine what to do



Linux Virtual Memory Areas

mm pgd

mmap

vm_end
vm_start
vm_prot
vm_flags

vm_next

vm_end
vm_start
vm_prot
vm_flags

vm_next

vm_end
vm_start
vm_prot
vm_flags

vm_next Shared Libraries

Data

Text
vm_end

vm_start
vm_prot
vm_flags

vm_next

task_struct mm_struct vm_area_struct Process VM

▶ pgd: address of page table
▶ vm_flags: private, shared
▶ vm_prot: read, write



Handling Page Faults

vm_end
vm_start
vm_prot
vm_flags

vm_next

vm_end
vm_start
vm_prot
vm_flags

vm_next

vm_end
vm_start
vm_prot
vm_flags

vm_next Shared Libraries

Data

Text
vm_end
vm_start
vm_prot
vm_flags

vm_next

vm_area_struct Process VM

Segmentation fault

Normal page fault
(-> load page)

Protection exception
(if write)

Kernel walks through vm_area_struct list to resolve page fault



Memory mapping



Objects on Disk

▶ Area of virtual memory = file on disk
▶ Regular file in file system
▶ file divided up into pages
▶ demand loading: just mapped to addresses, not actually loaded
▶ could be code, shared library, data file

▶ Anonymous file
▶ typically allocated memory
▶ when used for the first time: set all values to zero
▶ never really on disk, except when swapped out



Shared Object

▶ A shared object is a file on disk
▶ Private object
▶ only its process can read/write
▶ changes not visible to other processes

▶ Shared object
▶ multiple processes can read/write
▶ changes visible to other processes



fork()

▶ Creates a new child process
▶ Copies all
▶ virtual memory area structures
▶ memory mapping structures
▶ page tables

▶ New process has identical access
to existing memory

User stack

Memory-mapped region 
for shared libraries

Run time heap (created by 
malloc)

Read/write segment 
(.data / .bss)

Read-only code segment 
(.init, .text., .rodata)



execve()

▶ Creates a new process
▶ Deletes all user areas
▶ Map private areas (.data, .code, .bss)
▶ Map shared libraries
▶ Set program counter

User stack

Memory-mapped region 
for shared libraries

Run time heap (created by 
malloc)

Read/write segment 
(.data / .bss)

Read-only code segment 
(.init, .text., .rodata)



User-Level Memory Mapping

▶ Process can create virtual memory areas with mmap
(may be loaded from file)

▶ Protection options (handled by kernel / hardware)
▶ executable code
▶ read
▶ write
▶ inaccessible

▶ Mapping options
▶ anonymous: data object initially zeroed out
▶ private
▶ shared



Dynamic memory allocation



Memory Allocation in C

▶ malloc()
▶ allocate specified amount of data
▶ return pointer to (virtual) address
▶ memory is allocated on heap

▶ free()
▶ frees memory allocated at pointer location
▶ may be between other allocated memory

▶ Need to track of list of allocated memory



Assumptions

▶ Each square is a 4-byte word
▶ Heap consists of 20 words
▶ Allocations must be aligned on a multiple of 8
▶ Shading indicates use:
▶ No shading: unallocated memory
▶ Dark: allocated memory
▶ Light: padding to ensure alignment



Example

p1 = malloc(4*sizeof(int))

p1



Example

p1 = malloc(4*sizeof(int))

p2 = malloc(5*sizeof(int))

p1

p1 p2



Example

p1 = malloc(4*sizeof(int))

p2 = malloc(5*sizeof(int))

p3 = malloc(6*sizeof(int))

p1

p1 p2

p1 p2 p3



Example

p1 = malloc(4*sizeof(int))

p2 = malloc(5*sizeof(int))

p3 = malloc(6*sizeof(int))

free(p2)

p1

p1 p2

p1 p2 p3

p1 p3



Example

p1 = malloc(4*sizeof(int))

p2 = malloc(5*sizeof(int))

p3 = malloc(6*sizeof(int))

free(p2)

p4 = malloc(2*sizeof(int))

p1

p1 p2

p1 p2 p3

p1 p3

p1 p3p4



Fragmentation

▶ Internal: unused space due to padding for
▶ alignment
▶ minimum block size

▶ External: as memory is allocated and freed:
▶ allocated blocks are scattered over the heap area
▶ there are gaps of various sizes between allocated blocks
▶ it might not be possible to find a large enough gap to satisfy an

allocation request, even though enough aggregate memory is available



Free list

▶ Free list
▶ need to maintain a list of free memory areas
▶ implicit: space between allocated memory
▶ explicit: maintain a separate list


	More refinements
	Core i7
	Linux
	Memory mapping
	Dynamic memory allocation

