
Lecture 3: Integer representation

David Hovemeyer

January 31, 2020

601.229 Computer Systems Fundamentals



Integer representation



Representing integers

I We’ve seen how to represent unsigned (nonnegative) integers
I Bit string intrepreted as a binary (base 2) number

I How to represent signed integers?
I Sign magnitude
I Ones’ complement
I Two’s complement

I In examples that follow, we’ll use 4-bit words
I Ideas will generalize to larger word sizes



Desired features for signed representation

What we want in a representation for signed integers:
I About half of encoding space used for negative values
I Each represented integer has a unique encoding as bit string
I Straightforward way to do arithmetic



Sign magnitude representation

Let most significant bit be a sign bit: 0→positive, 1→negative

Bit string value Bit string value
0000 0 1000 -0
0001 1 1001 -1
0010 2 1010 -2
0011 3 1011 -3
0100 4 1100 -4
0101 5 1101 -5
0110 6 1110 -6
0111 7 1111 -7

Downsides: two representations of 0, arithmetic complicated by sign bit



Ones’ complement

Ones’ complement: to represent -x, invert all of the bits of x

Bit string value Bit string value
0000 0 1000 -7
0001 1 1001 -6
0010 2 1010 -5
0011 3 1011 -4
0100 4 1100 -3
0101 5 1101 -2
0110 6 1110 -1
0111 7 1111 -0

Downsides: two representations of 0, slightly complicated arithmetic



Sign magnitude and ones’ complement are obsolete

I Sign magnitude and ones’ complement representations are not used for
integer representation by modern computers
I But, sign magnitude is used in floating point representation

I The rest of this lecture will discuss two’s complement



Two’s complement

Two’s complement: in w -bit word, the most significant bit represents −2w−1

E.g., when w = 4,

Representation Bit 3 Bit 2 Bit 1 Bit 0
Unsigned 8 4 2 1

Two’s complement -8 4 2 1

Given bit string 1011,
I Unsigned, 1011 is 8 + 2 + 1 = 11
I Two’s complement, 1011 is −8 + 2 + 1 = −5



Two’s complement

Two’s complement: in w -bit word, the most significant bit represents −2w−1

Bit string value Bit string value
0000 0 1000 -8
0001 1 1001 -7
0010 2 1010 -6
0011 3 1011 -5
0100 4 1100 -4
0101 5 1101 -3
0110 6 1110 -2
0111 7 1111 -1

Note asymmetry of negative and positive ranges: -8 is represented, 8 isn’t



Thinking about two’s complement

Useful way to think about a w -bit two’s complement representation:
I Bit w − 1 is the sign bit, 0→positive, 1→negative
I If sign bit is 0, usual unsigned interpretation
I If sign bit is 1, bits w − 2 . . 0 indicate the “offset” from −2w−1



Two’s complement example

Given w = 4, example bit string is 1011
I Sign bit is 1
I Offset from −23 is 011, which is 3 (2+1)
I -8 + 3 = -5

So, 1011 represents -5



Clicker quiz

Clicker quiz omitted from public slides



Why two’s complement?

The most important advantage of two’s complement:

Unsigned addition yields correct
result for signed values!

Wow!



Why two’s complement?

The most important advantage of two’s complement:

Unsigned addition yields correct
result for signed values!

Wow!



Why two’s complement?

The most important advantage of two’s complement:

Unsigned addition yields correct
result for signed values!

Wow!



Trying it out

Add two 8 bit integer values:

00101101

+ 11111100
100101001



Trying it out

Add two 8 bit integer values:

00101101
+ 11111100

100101001



Trying it out

Add two 8 bit integer values:

00101101
+ 11111100

100101001



Trying it out

As unsigned values:

00101101 45
+ 11111100 252

100101001 297 (truncated to 41)



Trying it out

As signed two’s complement values:

00101101 45
+ 11111100 -4

100101001 41



Subtraction via addition

I Two’s complement negation: invert all bits, then add 1
I Example, negating 5
I Original value: 00000101
I Invert bits: 11111010
I Add one: 11111011
I Value is -128 + 64 + 32 + 16 + 8 + 2 + 1 = -5

I a − b can be computed as a +−b
I I.e., invert b, then add to a



Sign extension

I Sometimes it is necessary to increase the number of bits in the
representation of a signed integer
I E.g., type cast or implicit conversion of a 16 bit short value to a 32 bit

int value
I In two’s complement, this can be accomplished by sign extension:

replicate the original sign bit as many times as necessary
I This preserves the numeric value!
I Processors typically have dedicated instructions to perform sign

extension



Sign extension example

Example: extend 4 bit two’s complement values 1011 and 0011 to 8 bits

Number of bits Bit string Meaning

4 1011 -8 + 2 + 1 = -5
8 11111011 -128 + 64 + 32 + 16 + 8 + 2 + 1 = -5
4 0011 2 + 1 = 3
8 00000011 2 + 1 = 3



Sign extension example program

#include <stdio.h>
void printbits(int x, int n) {

for (int i = n-1; i >= 0; i--) {
putchar(x & (1 << i) ? ’1’ : ’0’);

}
putchar(’\n’);

}

int main(void) {
short s = -27987;
int i = (int) s; // <-- sign extension occurs here
printf("%*c", 16, ’ ’);
printbits(s, 16);
printbits(i, 32);
return 0;

}



Sign extension example program (output)

$ gcc signext.c
$ ./a.out

1001001010101101
11111111111111111001001010101101



Clicker quiz!

Clicker quiz omitted from public slides



Extending unsigned values

Extending the representation of an unsigned value is straightforward:
unconditionally pad with 0 bits

Example: 4 bit unsigned value 1011 = 8 + 2 + 1 = 11

As an 8 bit unsigned value, 00001011 = 8 + 2 + 1 = 11



General observation

In general, increasing the number of bits in the representation of an integer
(signed or unsigned) will preserve its value



Truncation

I Truncation: reducing the number of bits in the representation of an
integer
I In general, this will lose information and potentially change the value

I Truncation is done by chopping off bits from the left side of the bit string
I Whatever remains is the new representation



Truncation example

Example: convert signed 8 bit integer -14 to a 4 bit signed integer

Number of bits Bit string Meaning

8 11110010 -128 + 64 + 32 + 16 + 2 = -14
4 0010 2



Truncation example program

#include <stdio.h>
void printbits(int x, int n) {

for (int i = n-1; i >= 0; i--) {
putchar(x & (1 << i) ? ’1’ : ’0’);

}
putchar(’\n’);

}

int main(void) {
short s = -129;
char c = s; // <-- truncation occurs here
printf("s=%d, c=%d\n", s, c);
printbits(s, 16);
printf("%*c", 8, ’ ’);
printbits(c, 8);
return 0;

}



Truncation example program (output)

$ gcc truncate.c
$ ./a.out
s=-129, c=127
1111111101111111

01111111

Explanation:
I short is a 16 bit signed type, char1 is a signed 8 bit type
I After truncation from 16 to 8 bits, the sign bit was 0, so the resulting

value became positive
I Look at the bit representations — convince yourself the values output by

printf make sense!

1Compiler-dependent, tested with gcc 7.4.0 on x86-64 Linux



Conversions between signed and unsigned

I Another important type of conversion is between signed and unsigned
values

I Fundamentally, data in the computer’s memory has no inherent meaning
I It is up to the program to decide how to interpret data
I Conversions between signed and unsigned (without changing the number

of bits) do not change the underlying representation as bits



Signed/unsigned conversion examples

Example: bit pattern 10010110 as signed and unsigned 8 bit integer values

Signed: -128 + 16 + 4 + 2 = -106

Unsigned: 128 + 16 + 4 + 2 = 150



Signed/unsigned conversion example program

#include <stdio.h>
unsigned char parsebits(const char *s) {

unsigned char val = 0;
char c;
while ((c = *s++)) {

val <<= 1;
if (c == ’1’) { val |= 1; }

}
return val;

}

int main(void) {
unsigned char uc = parsebits("10010110");
char c = (char) uc; // <-- conversion from unsigned to signed
printf("%u %d\n", uc, c);
return 0;

}



Signed/unsigned conversion example program (output)

$ gcc convert.c
$ ./a.out
150 -106



Considerations for writing programs



Programming considerations

I Semantics of integer values and data types can be surprisingly subtle
I C and C++ further complicate matters in several ways:
I Data type sizes vary
I Integer representation not actually specified by the language!
I Some operations the program could perform have semantics that are

implementation-defined or (worse) undefined
I Recommendation: be very careful!



Implicit conversions

I In C, there are many contexts in which implicit conversions will occur
I Including ones where information can be lost!

I It’s important to know where implicit conversions happen and to
understand their effects

I It’s not a bad idea to use explicit type casts so that conversions are
explicit, even if they aren’t strictly necessary
I Semantics of program are more obvious, avoid unintended behaviors



Sign extension

I Sign extension can sometimes have surprising consequences (bits that you
thought would be 0 become 1)

I Values belonging to unsigned types (unsigned char, unsigned short,
etc.) are never sign extended


	Integer representation
	Considerations for writing programs

