
Lecture 6: Machine-level program representation

David Hovemeyer

February 7, 2020

601.229 Computer Systems Fundamentals

Compiling and executing a C program

Compilation

I There are many high-level programming languages (Java, Python, C,
C++, ...)

I A computer can only directly execute machine code
I So, translation from high-level language code to machine code is necessary
I Strategies:
I Interpretation: a program “interprets” the high-level code and carries

out the specified computation
I Compilation: a compiler program translates the high-level code into

machine code
I Hybrid strategies are possible (e.g., Java Virtual Machine)

Compilation

I There are many high-level programming languages (Java, Python, C,
C++, ...)

I A computer can only directly execute machine code

I So, translation from high-level language code to machine code is necessary
I Strategies:
I Interpretation: a program “interprets” the high-level code and carries

out the specified computation
I Compilation: a compiler program translates the high-level code into

machine code
I Hybrid strategies are possible (e.g., Java Virtual Machine)

Compilation

I There are many high-level programming languages (Java, Python, C,
C++, ...)

I A computer can only directly execute machine code
I So, translation from high-level language code to machine code is necessary
I Strategies:

I Interpretation: a program “interprets” the high-level code and carries
out the specified computation

I Compilation: a compiler program translates the high-level code into
machine code

I Hybrid strategies are possible (e.g., Java Virtual Machine)

Compilation

I There are many high-level programming languages (Java, Python, C,
C++, ...)

I A computer can only directly execute machine code
I So, translation from high-level language code to machine code is necessary
I Strategies:
I Interpretation: a program “interprets” the high-level code and carries

out the specified computation

I Compilation: a compiler program translates the high-level code into
machine code

I Hybrid strategies are possible (e.g., Java Virtual Machine)

Compilation

I There are many high-level programming languages (Java, Python, C,
C++, ...)

I A computer can only directly execute machine code
I So, translation from high-level language code to machine code is necessary
I Strategies:
I Interpretation: a program “interprets” the high-level code and carries

out the specified computation
I Compilation: a compiler program translates the high-level code into

machine code

I Hybrid strategies are possible (e.g., Java Virtual Machine)

Compilation

I There are many high-level programming languages (Java, Python, C,
C++, ...)

I A computer can only directly execute machine code
I So, translation from high-level language code to machine code is necessary
I Strategies:
I Interpretation: a program “interprets” the high-level code and carries

out the specified computation
I Compilation: a compiler program translates the high-level code into

machine code
I Hybrid strategies are possible (e.g., Java Virtual Machine)

Compiling C code
Example C program:

#include <stdio.h>
#include <stdlib.h>

long times10(long x) {
long result = (x << 3) + (x << 1);
return result;

}

int main(void) {
printf("Enter value: ");
long x;
scanf("%ld", &x);
long y = times10(x);
printf("Result=%ld\n", y);
return 0;

}

Compiling a C program

cprog.c cprog.s cprog.o cprog

gcc -S cprog.c gcc -c cprog.s gcc -o cprog cprog.o

C source code Assembly code Object code Executable

Compile Assemble Link

Compile and assemble steps are often combined (convert .c to .o), but they
are still separate steps

C vs. assembly code

C code:
long times10(long x) {

long result =
(x << 3) + (x << 1);

return result;
}

Assembly code:
times10:

leaq (%rdi,%rdi), %rax
leaq (%rax,%rdi,8), %rax
ret

Assembly vs. machine code

Assembly code must be assembled into machine code:

Assembly code:
times10:

leaq (%rdi,%rdi), %rax
leaq (%rax,%rdi,8), %rax
ret

Machine code:

48 8d 04 3f
48 8d 04 f8
c3

The CPU can directly decode and execute machine instructions

x86-64 assembly programming

Why learn assembly language?

I Since compilers exist, why learn how to write assembly code?

I Have complete control over hardware
I Understand hardware-level program execution
I Important for understanding security vulnerabilities, and how to avoid

introducing them
I Optimize performance-critical code
I Implement code generators (compilers, JIT compilers)

Why learn assembly language?

I Since compilers exist, why learn how to write assembly code?
I Have complete control over hardware

I Understand hardware-level program execution
I Important for understanding security vulnerabilities, and how to avoid

introducing them
I Optimize performance-critical code
I Implement code generators (compilers, JIT compilers)

Why learn assembly language?

I Since compilers exist, why learn how to write assembly code?
I Have complete control over hardware
I Understand hardware-level program execution
I Important for understanding security vulnerabilities, and how to avoid

introducing them

I Optimize performance-critical code
I Implement code generators (compilers, JIT compilers)

Why learn assembly language?

I Since compilers exist, why learn how to write assembly code?
I Have complete control over hardware
I Understand hardware-level program execution
I Important for understanding security vulnerabilities, and how to avoid

introducing them
I Optimize performance-critical code

I Implement code generators (compilers, JIT compilers)

Why learn assembly language?

I Since compilers exist, why learn how to write assembly code?
I Have complete control over hardware
I Understand hardware-level program execution
I Important for understanding security vulnerabilities, and how to avoid

introducing them
I Optimize performance-critical code
I Implement code generators (compilers, JIT compilers)

x86-64 architecture

Selected “x86” processors
CPU Vendor Year Bits Note
8086 Intel 1978 16
80386 Intel 1985 32 32-bit, virtual memory
Pentium Intel 1993 32

Pentium Pro Intel 1995 32
Pentium III Intel 1999 32
Pentium 4 Intel 2004 32
Opteron AMD 2003 64 First 64-bit x86 (“AMD64”)

Subsequent Intel CPUs adopted the AMD64 architecture (calling it “EM64T”)

Often called “x86-64” or just “x64”

x86-64 registers

Register(s) Note
%rip Instruction pointer
%rax Function return value

%rdi, %rsi
%rbx, %rcx, %rdx

%rsp, %rbp Stack pointer, frame pointer
%r8, %r9, ..., %r15

All of these registers are 64 bits (8 bytes)

Aside from %rip and %rsp, all of these are general-purpose registers

“Sub”-registers

I For historical reasons (evolution of x86 architecture from 16 to 64 bits),
each data register is divided into
I Low byte
I Second lowest byte
I Lowest 2 bytes (16 bits)
I Lowest 4 bytes (32 bits)

I E.g., %rax register has %al, %ah, %ax, %eax:

ax
eax

alah

rax

08163263

Memory

I Conceptually, memory is a big array of byte-sized storage locations
I Each location has an address
I In x86-64, addresses are 64 bit, so 264 addresses
I In reality, there are additional details:
I Actual x86-64 processors don’t use all of the address bits
I Virtual memory creates an arbitrary mapping of address to physical

memory
I Virtual memory is mapped “sparsely”: only some ranges of addresses

are mapped to actual memory

A C program

#include <stdio.h>

char buf[1000];
int arr[21];

int main(void) {
int i, j;
fgets(buf, 1000, stdin);
for (i = 0; i < 21; i++)

sscanf(buf + i*2, "%2x", &arr[i]);
for (i = 0; i < 21; i++)

printf("%c%s", arr[i], (i+1)%7 == 0 ? "\n" : "");
return 0;

}

Running the C program

$ gcc -o art art.c

$./art
7C5C2D2D2D2F7C7C206F5F6F207C205C5F5E5F2F20
|\---/|
| o_o |
^/

:-)

Memory layout of C program

Using the pmap command to inspect the memory map of the running program:

29208: ./art
0000562d71c36000 4K r-x-- art
0000562d71e36000 4K r---- art
0000562d71e37000 4K rw--- art
0000562d735fc000 132K rw--- [anon]
00007f7b5b9a5000 1948K r-x-- libc-2.27.so
00007f7b5bb8c000 2048K ----- libc-2.27.so
00007f7b5bd8c000 16K r---- libc-2.27.so
00007f7b5bd90000 8K rw--- libc-2.27.so
00007f7b5bd92000 16K rw--- [anon]
00007f7b5bd96000 156K r-x-- ld-2.27.so
00007f7b5bfa0000 8K rw--- [anon]
00007f7b5bfbd000 4K r---- ld-2.27.so
00007f7b5bfbe000 4K rw--- ld-2.27.so
00007f7b5bfbf000 4K rw--- [anon]
00007fff84484000 132K rw--- [stack]
00007fff845d4000 12K r---- [anon]
00007fff845d7000 8K r-x-- [anon]
ffffffffff600000 4K r-x-- [anon]
total 4512K

Stack

I The stack is an extremely important runtime data structure
I Is a stack of activation records, a.k.a. “stack frames”
I A stack frame represents an in-progress function call, and contains
I Return address (address of instruction where control should return

when function returns)
I Local variables
I Temporary data

I The %rsp register is the stack pointer
I Contains address of “top” of stack
I Stack grows down (from high to low addresses), so %rsp decreases as

stack grows

Assembly language!

I Assembly code = sequence of instructions
I Executed sequentially

(kind of, see Chapter 5)
I Each instruction has a mnemonic (mov, push, add, etc.)
I Most instructions will have one or two operands that specify data values

(input and/or output)
I On Linux, the standard tools use “AT&T” assembly syntax
I Source is first operand, destination is second

Assembly language!

I Assembly code = sequence of instructions
I Executed sequentially (kind of, see Chapter 5)

I Each instruction has a mnemonic (mov, push, add, etc.)
I Most instructions will have one or two operands that specify data values

(input and/or output)
I On Linux, the standard tools use “AT&T” assembly syntax
I Source is first operand, destination is second

Assembly language!

I Assembly code = sequence of instructions
I Executed sequentially (kind of, see Chapter 5)

I Each instruction has a mnemonic (mov, push, add, etc.)

I Most instructions will have one or two operands that specify data values
(input and/or output)

I On Linux, the standard tools use “AT&T” assembly syntax
I Source is first operand, destination is second

Assembly language!

I Assembly code = sequence of instructions
I Executed sequentially (kind of, see Chapter 5)

I Each instruction has a mnemonic (mov, push, add, etc.)
I Most instructions will have one or two operands that specify data values

(input and/or output)

I On Linux, the standard tools use “AT&T” assembly syntax
I Source is first operand, destination is second

Assembly language!

I Assembly code = sequence of instructions
I Executed sequentially (kind of, see Chapter 5)

I Each instruction has a mnemonic (mov, push, add, etc.)
I Most instructions will have one or two operands that specify data values

(input and/or output)
I On Linux, the standard tools use “AT&T” assembly syntax
I Source is first operand, destination is second

Assembly code structure, labels

I Assembly code generally specifies both code and data
I Much like code written in a high level language

I A label marks the location of a chunk of code and/or data
I Syntax:

nameOfLabel:
labeled code or data

I When the assembly code eventually runs, its code and data are loaded
into memory

I So, labels are synonymous with memory addresses
I In general, you can use labels as memory addresses in your assembly code

Operand size suffixes

I You will notice that instruction mnemonics sometimes use suffixes to
indicate the operand size:

Suffix Bytes Bits Note
b 1 8 “Byte”
w 2 16 “Word”
l 4 32 “Long” word
q 8 64 “Quad” word

(Use of w to mean 16 bits shows 16-bit origins of x86)
I E.g., movq means move a 64 bit value
I You can often omit the operand size suffix, but it’s helpful for readability,

and can even catch bugs

Assembly operands

Assume count and arr are global variables, R is a register, N is an
immediate, S is 1, 2, 4, or 8

Type Syntax Example Note
Memory ref Addr count Absolute memory address
Immediate $N $8, $arr $arr is address of arr
Register R %rax

Memory ref (R) (%rax) Address = %rax
Memory ref N(R) 8(%rax) Address = %rax+8
Memory ref (R,R) (%rax,%rsi) Address = %rax+%rsi
Memory ref N(R,R) 8(%rax,%rsi) Address = %rax+%rsi+8
Memory ref (,R,S) (,%rsi,4) Address = %rsi×4
Memory ref (R,R,S) (%rax,%rsi,4) Address = %rax+(%rsi×4)
Memory ref N(,R,S) 8(,%rsi,4) Address = (%rsi×4)+8
Memory ref N(R,R,S) 8(%rax,%rsi,4) Address = %rax+(%rsi×4)+8

Data movement

90% of assembly code is data movement (made-up statistic)

I mov: copy source operand to destination operand
I Register
I Memory location (only one operand can be memory location)
I Immediate value (source operand only)

I Stack manipulation: push and pop instructions
I Generally used for saving and restoring register values
I push: decrement %rsp by operand size, copy operand to (%rsp)
I pop: copy (%rsp) to operand, increment %rsp by operand size

Data movement examples

Instruction Note
movq $42, %rax Store the constant value 42 in %rax
movq %rax, %rdi Copy 8 byte value from %rax to %rdi
movl %eax, 4(%rdx) Move 4 byte value from %eax to memory at address %rdx+4
pushq %rbp Decrement %rsp by 8,

store contents of %rbp in memory location %rsp
popq %rbp Load contents of memory location %rsp into %rbp,

increment %rsp by 8

Clicker quiz!

Clicker quiz omitted from public slides

Assigning 32 bit value to 64 bit register

I Each 64 bit register has an alias for the lower 32 bits
I %rax, %eax
I %rdi, %edi
I %r10, %r10d
I etc.

I Storing a value in the low 32 bits clears the upper 32 bits
I E.g.:

movq $0xffffffffffffffff, %rax /* %rax initially contains ffffffffffffffff */
movl $1, %eax /* %rax now contains 1 */

Zero-extension, sign-extension

I When moving a smaller source value to a larger destination,
sign-extension (copying sign bit to high bits of result) is necessary to
preserve the value of a signed value

I E.g., representation of -16381 as 16 bit and 32 bit values:
Bits Representation
16 1100000000000011
32 11111111111111111100000000000011

I Data movement with sign-extension: movsbw, movsbl, movswl, etc.
I E.g., movswl %ax, %edi

I For unsigned values, data movement with zero-extension (copying 0 into
high bits of result): movzbw, movzbl, movzwl, etc.

Example C program

#include <stdio.h>

void addLongs(long x, long y, long *p) {
*p = x + y;

}

int main(void) {
long a, b, result;
scanf("%ld", &a);
scanf("%ld", &b);
addLongs(a, b, &result);
printf("Result is %ld\n", result);
return 0;

}

Example assembly program
.section .rodata

longIntFmt:
.string "%ld"

resultFmt:
.string "Result is %ld\n"

.section .text

.globl addLongs
addLongs:

addq %rdi, %rsi
movq %rsi, (%rdx)
ret

.globl main
main:

pushq %rbp
subq $32, %rsp
movq %rsp, %rbp

movq $longIntFmt, %rdi
leaq 0(%rbp), %rsi
call scanf

movq $longIntFmt, %rdi
leaq 8(%rbp), %rsi
call scanf

movq 0(%rbp), %rdi
movq 8(%rbp), %rsi
leaq 16(%rbp), %rdx
call addLongs

movq $resultFmt, %rdi
movq 16(%rbp), %rsi
call printf

addq $32, %rsp
popq %rbp
ret

Things to note:
I The first three function

parameters are passed in
%rdi, %rsi, and %rdx

I (%rdx) means the
memory location pointed-to
by %rdx (like pointer
dereference)

I 8(%rbp) means the
memory location at address
%rbp+8

I leaq 16(%rbp), %rdx
means compute the address
%rbp+16 and store it in
%rdx (like address-of)

Example assembly program
.section .rodata

longIntFmt:
.string "%ld"

resultFmt:
.string "Result is %ld\n"

.section .text

.globl addLongs
addLongs:

addq %rdi, %rsi
movq %rsi, (%rdx)
ret

.globl main
main:

pushq %rbp
subq $32, %rsp
movq %rsp, %rbp

movq $longIntFmt, %rdi
leaq 0(%rbp), %rsi
call scanf

movq $longIntFmt, %rdi
leaq 8(%rbp), %rsi
call scanf

movq 0(%rbp), %rdi
movq 8(%rbp), %rsi
leaq 16(%rbp), %rdx
call addLongs

movq $resultFmt, %rdi
movq 16(%rbp), %rsi
call printf

addq $32, %rsp
popq %rbp
ret

Things to note:

I The first three function
parameters are passed in
%rdi, %rsi, and %rdx

I (%rdx) means the
memory location pointed-to
by %rdx (like pointer
dereference)

I 8(%rbp) means the
memory location at address
%rbp+8

I leaq 16(%rbp), %rdx
means compute the address
%rbp+16 and store it in
%rdx (like address-of)

Example assembly program
.section .rodata

longIntFmt:
.string "%ld"

resultFmt:
.string "Result is %ld\n"

.section .text

.globl addLongs
addLongs:

addq %rdi, %rsi
movq %rsi, (%rdx)
ret

.globl main
main:

pushq %rbp
subq $32, %rsp
movq %rsp, %rbp

movq $longIntFmt, %rdi
leaq 0(%rbp), %rsi
call scanf

movq $longIntFmt, %rdi
leaq 8(%rbp), %rsi
call scanf

movq 0(%rbp), %rdi
movq 8(%rbp), %rsi
leaq 16(%rbp), %rdx
call addLongs

movq $resultFmt, %rdi
movq 16(%rbp), %rsi
call printf

addq $32, %rsp
popq %rbp
ret

Things to note:
I The first three function

parameters are passed in
%rdi, %rsi, and %rdx

I (%rdx) means the
memory location pointed-to
by %rdx (like pointer
dereference)

I 8(%rbp) means the
memory location at address
%rbp+8

I leaq 16(%rbp), %rdx
means compute the address
%rbp+16 and store it in
%rdx (like address-of)

Example assembly program
.section .rodata

longIntFmt:
.string "%ld"

resultFmt:
.string "Result is %ld\n"

.section .text

.globl addLongs
addLongs:

addq %rdi, %rsi
movq %rsi, (%rdx)
ret

.globl main
main:

pushq %rbp
subq $32, %rsp
movq %rsp, %rbp

movq $longIntFmt, %rdi
leaq 0(%rbp), %rsi
call scanf

movq $longIntFmt, %rdi
leaq 8(%rbp), %rsi
call scanf

movq 0(%rbp), %rdi
movq 8(%rbp), %rsi
leaq 16(%rbp), %rdx
call addLongs

movq $resultFmt, %rdi
movq 16(%rbp), %rsi
call printf

addq $32, %rsp
popq %rbp
ret

Things to note:
I The first three function

parameters are passed in
%rdi, %rsi, and %rdx

I (%rdx) means the
memory location pointed-to
by %rdx (like pointer
dereference)

I 8(%rbp) means the
memory location at address
%rbp+8

I leaq 16(%rbp), %rdx
means compute the address
%rbp+16 and store it in
%rdx (like address-of)

Example assembly program
.section .rodata

longIntFmt:
.string "%ld"

resultFmt:
.string "Result is %ld\n"

.section .text

.globl addLongs
addLongs:

addq %rdi, %rsi
movq %rsi, (%rdx)
ret

.globl main
main:

pushq %rbp
subq $32, %rsp
movq %rsp, %rbp

movq $longIntFmt, %rdi
leaq 0(%rbp), %rsi
call scanf

movq $longIntFmt, %rdi
leaq 8(%rbp), %rsi
call scanf

movq 0(%rbp), %rdi
movq 8(%rbp), %rsi
leaq 16(%rbp), %rdx
call addLongs

movq $resultFmt, %rdi
movq 16(%rbp), %rsi
call printf

addq $32, %rsp
popq %rbp
ret

Things to note:
I The first three function

parameters are passed in
%rdi, %rsi, and %rdx

I (%rdx) means the
memory location pointed-to
by %rdx (like pointer
dereference)

I 8(%rbp) means the
memory location at address
%rbp+8

I leaq 16(%rbp), %rdx
means compute the address
%rbp+16 and store it in
%rdx (like address-of)

Example assembly program
.section .rodata

longIntFmt:
.string "%ld"

resultFmt:
.string "Result is %ld\n"

.section .text

.globl addLongs
addLongs:

addq %rdi, %rsi
movq %rsi, (%rdx)
ret

.globl main
main:

pushq %rbp
subq $32, %rsp
movq %rsp, %rbp

movq $longIntFmt, %rdi
leaq 0(%rbp), %rsi
call scanf

movq $longIntFmt, %rdi
leaq 8(%rbp), %rsi
call scanf

movq 0(%rbp), %rdi
movq 8(%rbp), %rsi
leaq 16(%rbp), %rdx
call addLongs

movq $resultFmt, %rdi
movq 16(%rbp), %rsi
call printf

addq $32, %rsp
popq %rbp
ret

Things to note:
I The first three function

parameters are passed in
%rdi, %rsi, and %rdx

I (%rdx) means the
memory location pointed-to
by %rdx (like pointer
dereference)

I 8(%rbp) means the
memory location at address
%rbp+8

I leaq 16(%rbp), %rdx
means compute the address
%rbp+16 and store it in
%rdx (like address-of)

Example assembly program (continued)
.section .rodata

longIntFmt:
.string "%ld"

resultFmt:
.string "Result is %ld\n"

.section .text

.globl addLongs
addLongs:

addq %rdi, %rsi
movq %rsi, (%rdx)
ret

.globl main
main:

pushq %rbp
subq $32, %rsp
movq %rsp, %rbp

movq $longIntFmt, %rdi
leaq 0(%rbp), %rsi
call scanf

movq $longIntFmt, %rdi
leaq 8(%rbp), %rsi
call scanf

movq 0(%rbp), %rdi
movq 8(%rbp), %rsi
leaq 16(%rbp), %rdx
call addLongs

movq $resultFmt, %rdi
movq 16(%rbp), %rsi
call printf

addq $32, %rsp
popq %rbp
ret

Things to note:
I 40 bytes are allocated

within main’s stack frame,
including 24 bytes for local
variables:

saved %rbp

saved %rip

result

second operand

first operand

%rbp, %rsp 0(%rbp)

8(%rbp)

16(%rbp)

unused

[higher addresses]

[lower addresses]

%rbp is used to access the
local variables

	Compiling and executing a C program
	x86-64 assembly programming

