
Lecture 22: Virtual Memory

Philipp Koehn

April 3, 2020

601.229 Computer Systems Fundamentals



Recall: Process Address Space

Kernel memory

User stack

Memory-mapped region 
for shared libraries

Run time heap (created by 
malloc)

Read/write segment 
(.data / .bss)

Read-only code segment 
(.init, .text., .rodata)

Stack pointer

Loaded from
executable

0

400000

ffffffff



Virtual Memory

I Abstraction of physical memory
I Purpose
I appearance of more available memory than physically exists (DRAM)
I handles disk caching / loading
I insulates memory of each process

I Page table: maps from virtual address to physical addresses
I Memory management unit (MMU):

hardware implementation of address translation



Virtual Memory

I Abstraction of physical memory
I Purpose
I appearance of more available memory than physically exists (DRAM)
I handles disk caching / loading
I insulates memory of each process

I Page table: maps from virtual address to physical addresses

I Memory management unit (MMU):
hardware implementation of address translation



Virtual Memory

I Abstraction of physical memory
I Purpose
I appearance of more available memory than physically exists (DRAM)
I handles disk caching / loading
I insulates memory of each process

I Page table: maps from virtual address to physical addresses
I Memory management unit (MMU):

hardware implementation of address translation



Warning

I This is going to get very complex
I Closely tied with multi-tasking (multiple processes)
I Partly managed by hardware, partly managed by software



Virtual addressing



Physical Addressing

CPU

…

0:
1:
2:
3:
4:
5:
6:
7:

Physical address (PA)

Main memory

Data

CPU chip

I So far, assumed CPU addresses physical memory



Virtual Addressing

CPU MMU

…

0:
1:
2:
3:
4:
5:
6:
7:

Address
translation

Virtual
address

(VA)

Physical
address

(PA)

CPU chip Main memory

Data

I Memory management unit (MMU): maps virtual to physical addresses



Address Space

I Virtual memory size: N = 2n bytes, e.g., 256TB
I Physical memory size: M = 2m bytes, e.g., 16GB
I Page (block of memory): P = 2p bytes, e.g., 4KB
I A virtual address can be encoded in n bits



Caching



Caching... Again?

I Yes, we already discussed caching, but for on-chip cache of DRAM
memory

I Now
I caching between RAM and disk
I driven by a large virtual memory address space
I to avoid unnecessary and duplicate loading

I Jargon
I previously “block”, now “page”
I now: “swapping” or “paging”



Mapping

empty
empty

empty

empty
empty

Physical memory

unallocated
cached

uncached
cached

unallocated
uncached

cached
unallocated
unallocated

unallocated

…

0:
1:
2:
3:
4:
5:
6:
7:

Virtual memory

8:

15:

Virtual pages (VP)
stored on disk

Physical pages (PP)
cached in DRAM



State of Virtual Memory Page

I Cached
I allocated page
I stored in physical memory

I Uncached
I allocated page
I not in physical memory

I Unallocated
I not used by virtual memory system so far



State of Virtual Memory Page

I Cached
I allocated page
I stored in physical memory

I Uncached
I allocated page
I not in physical memory

I Unallocated
I not used by virtual memory system so far



State of Virtual Memory Page

I Cached
I allocated page
I stored in physical memory

I Uncached
I allocated page
I not in physical memory

I Unallocated
I not used by virtual memory system so far



Page Table

I Array of page table entries (PTE)

(actually, a tree where the leaves store the page table entries)
I Each PTE maps a virtual page to a physical page
I Valid bit
I set if PTE currently maps to physical address (cached)
I not set otherwise (uncached or unallocated)

I Mapped address
I if cached: physical address in DRAM
I if not cached: physical address on disk



Page Table

I Array of page table entries (PTE)
(actually, a tree where the leaves store the page table entries)

I Each PTE maps a virtual page to a physical page
I Valid bit
I set if PTE currently maps to physical address (cached)
I not set otherwise (uncached or unallocated)

I Mapped address
I if cached: physical address in DRAM
I if not cached: physical address on disk



Page Table

I Array of page table entries (PTE)
(actually, a tree where the leaves store the page table entries)

I Each PTE maps a virtual page to a physical page

I Valid bit
I set if PTE currently maps to physical address (cached)
I not set otherwise (uncached or unallocated)

I Mapped address
I if cached: physical address in DRAM
I if not cached: physical address on disk



Page Table

I Array of page table entries (PTE)
(actually, a tree where the leaves store the page table entries)

I Each PTE maps a virtual page to a physical page
I Valid bit
I set if PTE currently maps to physical address (cached)
I not set otherwise (uncached or unallocated)

I Mapped address
I if cached: physical address in DRAM
I if not cached: physical address on disk



Page Table

I Array of page table entries (PTE)
(actually, a tree where the leaves store the page table entries)

I Each PTE maps a virtual page to a physical page
I Valid bit
I set if PTE currently maps to physical address (cached)
I not set otherwise (uncached or unallocated)

I Mapped address
I if cached: physical address in DRAM
I if not cached: physical address on disk



Page Table

VP1
VP6
VP3
VP7

VP0
VP1
VP2
VP3

Physical memory
DRAM

null

null

0:
1:
2:
3:
4:
5:
6:
7:

Page table

Disk

0
1
0
1
0
0
1
1

VP4
VP5
VP6
VP7

Valid Address



Page Hit

VP1
VP6
VP3
VP7

VP0
VP1
VP2
VP3

Physical memory
DRAM

null

null

0:
1:
2:
3:
4:
5:
6:
7:

Page table

Disk

0
1
0
1
0
0
1
1

VP4
VP5
VP6
VP7

Valid Address

Virtual address



Page Fault

VP1
VP6
VP3
VP7

VP0
VP1
VP2
VP3

Physical memory
DRAM

null

null

0:
1:
2:
3:
4:
5:
6:
7:

Page table

Disk

0
1
0
1
0
0
1
1

VP4
VP5
VP6
VP7

Valid Address

Virtual address

I Valid bit = 0
I Page not in RAM



Page Fault

VP1
VP6
VP3
VP7

VP0
VP1
VP2
VP3

Physical memory
DRAM

null

null

0:
1:
2:
3:
4:
5:
6:
7:

Page table

Disk

0
1
0
1
0
0
1
1

VP4
VP5
VP6
VP7

Valid Address

Virtual address

I Page is on disk



Page Fault

VP1

VP3
VP7

VP0
VP1
VP2
VP3

Physical memory
DRAM

null

null

0:
1:
2:
3:
4:
5:
6:
7:

Page table

Disk

0
1
0
1
0
0
1
1

VP4
VP5
VP6
VP7

Valid Address

Virtual address

I Make space in RAM
I Pre-empt "victim" page
I Typically out-dated cached page



Page Fault

VP1
VP2
VP3
VP7

VP0
VP1
VP2
VP3

Physical memory
DRAM

null

null

0:
1:
2:
3:
4:
5:
6:
7:

Page table

Disk

0
1
0
1
0
0
1
1

VP4
VP5
VP6
VP7

Valid Address

Virtual address

I Load page into RAM



Page Fault

VP1
VP2
VP3
VP7

VP0
VP1
VP2
VP3

Physical memory
DRAM

null

null

0:
1:
2:
3:
4:
5:
6:
7:

Page table

Disk

0
1
1
1
0
0
1
1

VP4
VP5
VP6
VP7

Valid Address

Virtual address

I Update page table entry



Allocating Pages

I What happens when we load a program?
I We need to load its executable into memory
I Similar: create data objects when program is running

(“allocating” memory)



Allocating Page

VP1
VP6
VP3
VP7

VP0
VP1
VP2
VP3

Physical memory
DRAM

null

null

0:
1:
2:
3:
4:
5:
6:
7:

Page table

Disk

0
1
0
1
0
0
1
1

VP4
VP5
VP6
VP7

Valid Address

I Identify space in virtual memory



Allocating Page

VP1
VP6
VP3
VP7

VP0
VP1
VP2
VP3

Physical memory
DRAM

null0:
1:
2:
3:
4:
5:
6:
7:

Page table

Disk

0
1
0
1
0
0
1
1

VP4
VP5
VP6
VP7

Valid Address

I Map to data on disk
I do not actual load
I just create page table entries
I let virtual memory system handle

loading
⇒ On-demand loading



Process Memory

I Nothing loaded at startup

I Working set (or resident set)
I pages of a process that are currently in DRAM
I loaded by virtual memory system on demand

I Thrashing
I memory actively required by all processes

larger than physically available
I frequent swapping of memory to/from disk
I very bad: slows down machine dramatically



Process Memory

I Nothing loaded at startup
I Working set (or resident set)
I pages of a process that are currently in DRAM
I loaded by virtual memory system on demand

I Thrashing
I memory actively required by all processes

larger than physically available
I frequent swapping of memory to/from disk
I very bad: slows down machine dramatically



Process Memory

I Nothing loaded at startup
I Working set (or resident set)
I pages of a process that are currently in DRAM
I loaded by virtual memory system on demand

I Thrashing
I memory actively required by all processes

larger than physically available
I frequent swapping of memory to/from disk
I very bad: slows down machine dramatically


	Virtual addressing
	Caching

