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A program

const int NUM_INCR=100000000, NTHREADS=2;
typedef struct { volatile int count; } Shared;

void *worker(void *arg) {
Shared *obj = arg;
for (int i = 0; i < NUM_INCR/NTHREADS; i++)

obj->count++;
return NULL;

}

int main(void) {
Shared *obj = calloc(1, sizeof(Shared));
pthread_t threads[NTHREADS];
for (int i = 0; i < NTHREADS; i++)

pthread_create(&threads[i], NULL, worker, obj);
for (int i = 0; i < NTHREADS; i++)

pthread_join(threads[i], NULL);
printf("%d\n", obj->count);
return 0;

}



Behavior

The program uses two threads, which repeatedly increment a shared counter

The counter is incremented a total of 100,000,000 times, starting from 0

So, the final value should be 100,000,000; running the program, we get

$ gcc -Wall -Wextra -pedantic -std=gnu11 -O2 -c incr_race.c
$ gcc -o incr_race incr_race.o -lpthread
$ ./incr_race
53015619

What happened?
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Atomicity

Incrementing the counter (obj->count++) is not atomic

In general, we should think of var++ as really meaning
reg = var;
reg = reg + 1;
var = reg;

When threads are executing concurrently, it’s possible for the variable to
change between the time its value is loaded and the time the updated value is
stored

Example of a data race causing a lost update
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Concurrent access to shared data

Point to ponder: if concurrent access can screw up something as simple as an
integer counter, imagine the complete mess it will make of your linked list,
balanced tree, etc.

Data structures have invariants which must be preserved

Mutations (insertions, removals) often violate these invariants temporarily
I Not a problem in a sequential program because the operation will

complete (and restore invariants) before anyone notices
I Huge problem in concurrent program where multiple threads could access

the data structure at the same time

Synchronization: protect shared data from concurrent access
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Code

Full source code for all of today’s examples is on web page, synch.zip



Semaphores and mutexes



Critical sections

A critical section is a region of code in which mutual exclusion must be
guaranteed for correct behavior

Mutual exclusion means that at most one concurrent task (thread) may be
accessing shared data at any given time

Enforcing mutual exclusion in critical sections guarantees atomicity
I I.e., code in critical section executes to completion without interruption

For the shared counter program, the update to the shared counter variable is a
critical section
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Semaphores and mutexes

Semaphores and mutexes are two types of synchronization constructs
available in pthreads

Both can be used to guarantee mutual exclusion

Semaphores can also be used to manage access to a finite resource

Mutexes (a.k.a., “mutual exclusion locks”) are simpler, so let’s discuss them
first



Mutexes

pthread_mutex_t: data type for a pthreads mutex

pthread_mutex_init: initialize a mutex

pthread_mutex_lock: locks a mutex for exclusive access
I If another thread has already locked the mutex, calling thread must wait

pthread_mutex_unlock: unlocks a mutex
I If any threads are waiting to lock the mutex, one will be woken up and

allowed to acquire it

pthread_mutex_destroy: destroys a mutex (once it is no longer needed)



Using a mutex

Using a mutex to protected a shared data structure:

I Associate a pthread_mutex_t variable with each instance of the data
structure

I Initialize with pthread_mutex_init when the data structure is initialized
I Each critical section is protected with calls to

pthread_mutex_lock and pthread_mutex_unlock
I Destroy mutex with pthread_mutex_destroy when data structure is

deallocated
It’s not too complicated!
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Updated shared counter program

Definition of Shared struct type:
typedef struct {

volatile int count;
pthread_mutex_t lock;

} Shared;

Definition of the worker function:
void *worker(void *arg) {

Shared *obj = arg;
for (int i = 0; i < NUM_INCR/NTHREADS; i++) {

pthread_mutex_lock(&obj->lock);
obj->count++;
pthread_mutex_unlock(&obj->lock);

}
return NULL;

}



Updated shared counter program

Main function:
int main(void) {

Shared *obj = calloc(1, sizeof(Shared));
pthread_mutex_init(&obj->lock, NULL);
pthread_t threads[NTHREADS];
for (int i = 0; i < NTHREADS; i++)

pthread_create(&threads[i], NULL, worker, obj);
for (int i = 0; i < NTHREADS; i++)

pthread_join(threads[i], NULL);
printf("%d\n", obj->count);
pthread_mutex_destroy(&obj->lock);
return 0;

}



Does it work?

Original version with lost update bug:

$ time ./incr_race
52683607

real 0m0.142s
user 0m0.276s
sys 0m0.000s

Fixed version using mutex:
$ time ./incr_fixed
100000000

real 0m10.262s
user 0m13.210s
sys 0m7.264s
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Contention

Contention occurs when multiple threads try to access the same shared data
structure at the same time

Costs associated with synchronization:

1. Cost of entering and leaving critical section (e.g., locking and unlocking a
mutex)

2. Reduced parallelism due to threads having to take turns (when contending
for access to shared data)

3. Cost of OS kernel code to suspend and resume threads as they wait to
enter critical sections

These costs can be significant! Best performance occurs when threads
synchronize relatively infrequently
I Shared counter example is a pathological case
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Semaphores

A semaphore is a more general synchronization construct, invented by Edsger
Dijkstra in the early 1960s

When created, semaphore is initialized with a nonnegative integer count value

Two operations:
I P (“proberen”): waits until the semaphore has a non-zero value, then

decrements the count by one
I V (“verhogen”): increments the count by one, waking up a thread waiting

to perform a P operation if appropriate

A mutex can be modeled as a semaphore whose initial value is 1



Semaphores in pthreads

Include the <semaphore.h> header file

Semaphore data type is sem_t

Functions:
I sem_init: initialize a semaphore with specified initial count
I sem_destroy: destroy a semaphore when no longer needed
I sem_wait: wait and decrement (P)
I sem_post: increment and wake up waiting thread (V)



Semaphmore applications

Semaphores are useful for managing access to a limited resource

Example: limiting maximum number of threads in a server application
I Initialize semaphore with desired maximum number of threads
I Use P operation before creating a client thread
I Use V operation when client thread finishes



Semaphore applications

Example: bounded queue
I Initially empty, can have up to a fixed maximum number of elements
I When enqueuing an item, thread waits until queue is not full
I When dequeuing an item, thread waits until queue is not empty

Implementation: two semaphores and one mutex
I slots semaphore: tracks how many slots are available
I items semaphore: tracks how many elements are present
I Mutex is used for critical sections accessing queue data structure



Bounded queue data structure

Bounded queue of generic (void *) pointers

Bounded queue data type:
typedef struct {

void **data;
unsigned max_items, head, tail;
sem_t slots, items;
pthread_mutex_t lock;

} BoundedQueue;

Bounded queue operations:
BoundedQueue *bqueue_create(unsigned max_items);
void bqueue_destroy(BoundedQueue *bq);
void bqueue_enqueue(BoundedQueue *bq, void *item);
void *bqueue_dequeue(BoundedQueue *bq);



Creating bounded queue

The slots semaphore initialized with max number of items, and items
semaphore initialized to 0

BoundedQueue *bqueue_create(unsigned max_items) {
BoundedQueue *bq = malloc(sizeof(BoundedQueue));
bq->data = malloc(max_items * sizeof(void *));
bq->max_items = max_items;
bq->head = bq->tail = 0;
sem_init(&bq->slots, 0, max_items);
sem_init(&bq->items, 0, 0);
pthread_mutex_init(&bq->lock, NULL);
return bq;

}



Enqueuing an item

Slots decreases (must wait until nonzero before new item can be added),
items increases

Queue implemented as a “circular” array of pointers: head refers to where
next item will be added, tail refers to where next item will be removed

void bqueue_enqueue(BoundedQueue *bq, void *item) {
sem_wait(&bq->slots); /* wait for empty slot */
pthread_mutex_lock(&bq->lock);
bq->data[bq->head] = item;
bq->head = (bq->head + 1) % bq->max_items;
pthread_mutex_unlock(&bq->lock);
sem_post(&bq->items); /* item is available */

}



Dequeuing an item

Items decreases (must wait until nonzero before item can be removed), slots
increases

void *bqueue_dequeue(BoundedQueue *bq) {
sem_wait(&bq->items); /* wait for item */
pthread_mutex_lock(&bq->lock);
void *item = bq->data[bq->tail];
bq->tail = (bq->tail + 1) % bq->max_items;
pthread_mutex_unlock(&bq->lock);
sem_post(&bq->slots); /* empty slot is available */
return item;

}



Queues are useful!

Synchronized queues are extremely useful in multithreaded programs!

In particular they are useful for producer/consumer relationships between
threads
I Producer enqueues items
I Consumer dequeues items
I Bounded queue: ensures that producer doesn’t get too far ahead of

consumer

More generally, a queue can be used to send a message to another thread
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Prethreading

Creating threads incurs some overhead

Prethreading : program creates a fixed number of threads ahead of time,
assigns work to them as it becomes available

Queues are an ideal mechanism to allow the “master” thread to send work to
the worker threads

A queue can also be used for messages sent from the workers back to the
master thread



Conway’s game of life

I Grid-based cellular automaton, cells are alive (1) or dead (0)
I Live cells with 2 or 3 live neighbors survive
I Dead cells with 3 live neighbors become alive
I Otherwise, cell dies (or stays dead)
I Over many generations, complex patterns can emerge



Sequential computation

Grid data type:
typedef struct {

unsigned nrows, ncols;
char *cur_buf, *next_buf;

} Grid;

Two buffers, one for current generation, one for next generation (swap after
each generation is simulated)

Sequential computation function:
void life_compute_next(Grid *grid, unsigned start_row,

unsigned end_row);

Updates cells in next generation for specified range of grid rows



Sequential computation

Simulating specified number of generations:
for (unsigned i = 0; i < num_gens; i++) {

life_compute_next(grid, 1, grid->nrows - 1);
grid_flip(grid);

}

Note that border cells are never updated (and are always 0)



Parallel computation (strategy)

Conway’s game of life is not quite an embarrassingly parallel computation
I Computation of generation n must finish before computation of

generation n + 1 can start

Could start a new batch of worker threads each generation
I But we’ll repeatedly pay the thread startup and teardown costs

Prethreading approach:
I Create fixed set of worker threads
I “Command queue” allows master thread to send tasks to the workers
I “Done queue” allows workers to notify master thread when tasks are

finished
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Parallel computation (implementation)

Work data type, has queues and main Grid data structure
typedef struct {

BoundedQueue *cmd_queue;
BoundedQueue *done_queue;
Grid *grid;

} Work;

Task data type, represents a range of grid rows for a worker to update
typedef struct {

unsigned start_row, end_row;
} Task;



Parallel computation (implementation)

worker function, executed by each worker thread:
void *worker(void *arg) {

Work *w = arg;

while (1) {
Task *t = bqueue_dequeue(w->cmd_queue);
if (t->end_row == 0) { break; }

/* do sequential computation */
life_compute_next(w->grid, t->start_row, t->end_row);

/* inform main thread that task is done */
bqueue_enqueue(w->done_queue, t);

}

return NULL;
}



Parallel computation (implementation)

Master thread:
Work w = { bqueue_create(NUM_THREADS), bqueue_create(NUM_THREADS), grid };
pthread_t threads[NUM_THREADS];
for (unsigned i = 0; i < NUM_THREADS; i++) {

pthread_create(&threads[i], NULL, worker, &w);
}

for (unsigned i = 0; i < num_gens; i++) { /* simulation loop */
distribute_work(&w, 0);
wait_until_done(&w);
grid_flip(grid);

}

distribute_work(&w, 1); /* send shutdown message */

for (unsigned i = 0; i < NUM_THREADS; i++) { /* wait for workers to finish */
pthread_join(threads[i], NULL);

}



Parallel computation (implementation)

Distributing work:
void distribute_work(Work *w, int done) {

unsigned rows_per_thread = (w->grid->nrows - 2) / NUM_THREADS;
for (unsigned i = 0; i < NUM_THREADS; i++) {

Task *task = malloc(sizeof(Task));
if (done) {

task->end_row = 0;
} else {

task->start_row = 1 + (i*rows_per_thread);
if (i == NUM_THREADS-1) { task->end_row = w->grid->nrows - 1; }

else { task->end_row = task->start_row + rows_per_thread; }
}

bqueue_enqueue(w->cmd_queue, task);
}

}



Parallel computation (implementation)

Waiting for workers to finish their tasks:
void wait_until_done(Work *w) {

for (unsigned i = 0; i < NUM_THREADS; i++) {
Task *t = bqueue_dequeue(w->done_queue);
free(t);

}
}



Sequential vs. parallel

Using a 1000x1000 cell input, 10,000 generations, sequential vs. parallel with
4 worker threads, on a Core i5-3320M (dual core, hyperthreaded):

$ ./life_seq board.txt 10000 out10000.txt
Computation finished in 59007 ms
$ ./life_par board.txt 10000 out10000par.txt
Computation finished in 32208 ms
$ diff out10000.txt out10000par.txt
no output



Analysis

We got about a 2x speedup using four threads

Relatively large chunks of work were assigned
I Costs of synchronization amortized over relatively large amounts of

sequential computation done by worker threads

Queues are an effective mechanism for communication between threads


	Semaphores and mutexes

