
Exam 4 Fall 2020 Solution

1) The output printed by process B depends on the byte order of the system executing process
A. If process A is on a little-endian architecture, then multi-byte values are arranged from least
significant to most significant, process B's output would be 4a5177b9. If process A is on a
big-endian architecture, where the most significant byte is first, process B's output would be
b977514a.

2) Implementations using text-based format, one value per line (this is kind of complicated,
since calling rio_readlineb in sr_receive isn't really an option):

int sr_send(int fd, const struct SensorReading *sr) {

char buf[256];

int len;

len = sprintf(buf, "%59f\n", sr->pos_x);

assert(len == 60);

if (rio_writen(fd, buf, len) != len) { return 0; }

len = sprintf(buf, "%59f\n", sr->pos_y);

assert(len == 60);

if (rio_writen(fd, buf, len) != len) { return 0; }

len = sprintf(buf, "%10u\n", sr->event_count);

assert(len == 11);

if (rio_writen(fd, buf, len) != len) { return 0; }

return 1;

}

int sr_receive(int fd, struct SensorReading *sr) {

char buf[256];

if (rio_readn(rd, buf, 60) != 60) { return 0; }

sscanf(buf, "%f", &sr->pos_x);

if (rio_readn(rd, buf, 60) != 60) { return 0; }

sscanf(buf, "%f", &sr->pos_y);

if (rio_readn(rd, buf, 11) != 11) { return 0; }

sscanf(buf, "%u", &sr->event_count);

return 1;

}

Implementations writing and reading raw binary data (allowed per clarifications on Piazza, and
this will only work correctly on machines sharing the same byte-level representation for float and
unsigned):

int sr_send(int fd, const struct SensorReading *sr) {

if (rio_writen(fd, &sr->pos_x, sizeof(float)) != sizeof(float))

{ return 0; }

if (rio_writen(fd, &sr->pos_y, sizeof(float)) != sizeof(float))

{ return 0; }

if (rio_writen(fd, &sr->event_count, sizeof(unsigned)) != sizeof(unsigned))

{ return 0; }

return 1;

}

int sr_receive(int fd, struct SensorReading *sr) {

if (rio_readn(fd, &sr->pos_x, sizeof(float)) != sizeof(float))

{ return 0; }

if (rio_readn(fd, &sr->pos_y, sizeof(float)) != sizeof(float))

{ return 0; }

if (rio_readn(fd, &sr->event_count, sizeof(unsigned)) != sizeof(unsigned))

{ return 0; }

return 1;

}

3)

(a) On a multi-core CPU, Option 2 allows prog1 and prog2 can execute in parallel. As long as
prog1 sends data to prog2 in a relatively continuous stream, prog2 can do useful work while
prog1 is executing, leading to a faster overall execution time, since in Option 1, prog2 doesn't
even begin executing until prog1 has completed.

(b) Even on a single-core CPU, in Option 2, if either process is suspended waiting for I/O to
complete (which is very possible since prog1 is reading data from a file and prog2 is writing data
to a file), the other process could still execute and do useful work.

4) The problem is that the child process doesn't exit, meaning that it will attempt to call Accept
after chat_with_client returns. To fix:

int server_fd = Open_listenfd(port);

while (1) {

int client_fd = Accept(server_fd, NULL, NULL);

pid_t pid = Fork();

if (pid == 0) {

// in child

chat_with_client(client_fd);

exit(0); // ←add this line

}

close(client_fd);

}

5) Using a single mutex to synchronize all accesses:

struct Histogram {

unsigned num_buckets;

unsigned *count_array;

pthread_mutex_t lock;

};

struct Histogram *hist_create(unsigned num_buckets) {

struct Histogram *h = malloc(sizeof(struct Histogram));

h->num_buckets = num_buckets;

h->count_array = calloc(num_buckets, sizeof(unsigned));

pthread_mutex_init(&h->lock, NULL);

return h;

}

void hist_increment(struct Histogram *h, unsigned bucket) {

pthread_mutex_lock(&h->lock);

assert(bucket < h->num_buckets);

h->count_array[bucket]++;

pthread_mutex_unlock(&h->lock);

}

unsigned hist_get_count(struct Histogram *h, unsigned bucket) {

assert(bucket < h->num_buckets);

pthread_mutex_lock(&h->lock);

unsigned count = h->count_array[bucket];

pthread_mutex_unlock(&h->lock);

return count;

}

6) A really easy solution would be to avoid using a mutex at all, and add the _Atomic type
qualifier to the array element type:

struct Histogram {

unsigned num_buckets;

_Atomic unsigned *count_array;

};

This change would have the effect of making the compiler emit an atomic increment instruction
in the hist_increment function.

Another approach would be to use an array of mutexes, one per bucket. Calls to
hist_increment and hist_get_count would only need to lock and unlock the mutex for the
specific bucket being accessed. The hist_create function would need to use
pthread_mutex_init to initialize each member of the mutex array.

