
Lecture 20: Process Control

Philipp Koehn

March 16, 2022

601.229 Computer Systems Fundamentals

Control Flow

I The CPU executes one instruction after another
I Typically, they are next to each other in memory (unless jumps, branches,

and returns from subroutine)
I Exceptional Control Flow, triggered by
I hardware exception
I software exception

Exceptions

I Interrupts
I signal from I/O device
I also: timer interrupts for multi-tasking

I Traps and system calls
I intentional
I triggered by instruction ("syscall")

I Faults
I maybe recoverable, e.g., swapped out memory ("page fault")
I if recovered, return to regular control flow

I Aborts
I unrecoverable fatal error, e.g., memory corrupted
I application process is terminated

Exceptions

I Interrupts
I signal from I/O device
I also: timer interrupts for multi-tasking

I Traps and system calls
I intentional
I triggered by instruction ("syscall")

I Faults
I maybe recoverable, e.g., swapped out memory ("page fault")
I if recovered, return to regular control flow

I Aborts
I unrecoverable fatal error, e.g., memory corrupted
I application process is terminated

Exceptions

I Interrupts
I signal from I/O device
I also: timer interrupts for multi-tasking

I Traps and system calls
I intentional
I triggered by instruction ("syscall")

I Faults
I maybe recoverable, e.g., swapped out memory ("page fault")
I if recovered, return to regular control flow

I Aborts
I unrecoverable fatal error, e.g., memory corrupted
I application process is terminated

Exceptions

I Interrupts
I signal from I/O device
I also: timer interrupts for multi-tasking

I Traps and system calls
I intentional
I triggered by instruction ("syscall")

I Faults
I maybe recoverable, e.g., swapped out memory ("page fault")
I if recovered, return to regular control flow

I Aborts
I unrecoverable fatal error, e.g., memory corrupted
I application process is terminated

Abrupt Change in Control Flow

current
next

execute
instructions interrupt,

finish current instruction,
 control passes to kernel

interrupt
handler

 handler returns
to next instruction

Processes

Process

I Exceptions are the basic building block for processes
I Modern computers seem to run several things at once
I retrieve and display web pages
I play music in the background
I accept emails and alert you to them

I Process = a running program
I appears to have full access to memory
I appears to run without interruptions

I Multi-tasking: modern OS that allow multiple processes at once

Process

I Exceptions are the basic building block for processes
I Modern computers seem to run several things at once
I retrieve and display web pages
I play music in the background
I accept emails and alert you to them

I Process = a running program
I appears to have full access to memory
I appears to run without interruptions

I Multi-tasking: modern OS that allow multiple processes at once

Process

I Exceptions are the basic building block for processes
I Modern computers seem to run several things at once
I retrieve and display web pages
I play music in the background
I accept emails and alert you to them

I Process = a running program
I appears to have full access to memory
I appears to run without interruptions

I Multi-tasking: modern OS that allow multiple processes at once

Logical Control Flow

tim
e

Process A Process B Process C

User and Kernel Mode

I Mode bit in control register
I Kernel mode: may execute any instruction, access any memory
I User mode: limited to private memory
I Switch from user to kernel mode
I voluntary (sleep)
I triggered by interrupt
I system call

Private Address Space

Kernel memory

User stack

Memory-mapped region
for shared libraries

Run time heap (created by
malloc)

Read/write segment
(.data / .bss)

Read-only code segment
(.init, .text., .rodata)

Stack pointer

Loaded from
executable

0

400000

ffffffff

Process Context

I Kernel maintains context for each process
I Context
I program counter
I register values
I address table (more on that soon)
I opened files
I various meta information (e.g., process name)

I In Linux, each process context viewable in /proc "file" system

Context Switches

tim
e

Process A Process B Process C

user
kernel

user

kernel
user

kernel

user

System calls

Examples

Number Name Description
0 read read from file
1 write write to file
2 open open file
3 close close file
33 pause suspend process until signal arrives
39 getpid get process id
57 fork create new process
60 exit end process
61 wait4 wait for a process to terminate
62 kill kill another process

Assembly Example
.section .data
string:

.ascii "hello, world!\n"
string_end:

.equ len, string_end - string

.section .text

.globl main
main:

movq $1, %rax ; write is system call 1
movq $1, %rdi ; arg1: stdout is "file" 1
movq string, %rsi ; arg2: hello world string
movq len, %rdx ; arg3: length of string
syscall

movq $60, %rax ; exit is system call 60
movq $0, %rdi ; exit status
syscall

System Call Control

syscall
next

execute
instructions

control passes to kernel
syscall
handler

runs handler returns
to next instruction,

provides return values

Zoom poll!

Which of these C library functions, when called, might result in a system call?
(Note: there could be multiple correct answers.)

A. printf
B. malloc
C. strcpy
D. All of A–C
E. None of A–C

Process control

Creating New Processes

I C code than spawns a child process
int main() {

int x = 1;
pid_t pid = fork();

if (pid == 0) {
printf("child x=%d", ++x);
exit(0);

}
printf("parent x=%d", --x);
exit(0);

}

I When run, it returns
parent x=0
child x=2

Syscall 57: Fork

I fork() creates a child process
I Call once, return twice
I in child process: return value 0
I in parent process: return value is process id of child

I Concurrent execution
I parent and child processes run concurrently
I no guarantee which proceeds first (and for how long)

I Duplicate by separate address space
I initially memory is identical
I each process makes changes to its private copy

Syscall 57: Fork

I fork() creates a child process
I Call once, return twice
I in child process: return value 0
I in parent process: return value is process id of child

I Concurrent execution
I parent and child processes run concurrently
I no guarantee which proceeds first (and for how long)

I Duplicate by separate address space
I initially memory is identical
I each process makes changes to its private copy

Syscall 57: Fork

I fork() creates a child process
I Call once, return twice
I in child process: return value 0
I in parent process: return value is process id of child

I Concurrent execution
I parent and child processes run concurrently
I no guarantee which proceeds first (and for how long)

I Duplicate by separate address space
I initially memory is identical
I each process makes changes to its private copy

Another Example

I Multiple forks
int main() {

fork();
fork();
printf("hello\n");
exit(0);

}

I Outputs "hello" 4 times

printf

printf

printf

printf

fork

forkfork exit

exit

exit

exit

main

Another Example

I Multiple forks
int main() {

fork();
fork();
printf("hello\n");
exit(0);

}

I Outputs "hello" 4 times

printf

printf

printf

printf

fork

forkfork exit

exit

exit

exit

main

Death in the Family

I What happens when what dies when?
I Child process dies
I process still in kernel’s process table
I waiting for parent to read exit status
I "zombie": dead, but still active

I Parent process dies
I children processes become orphaned
I orphan killing: terminate all orphaned processes
I re-parenting: make init process (pid: 1) parent

(→ a "daemon" process)

Waiting for Child to Die

1. Parent spawns child process
2. Both processes running
3. Parent waits for child to complete
I C: waitpid()
I Assembly: syscall 61

4. Parent stalls
5. Child dies (zombie)
6. Parent receives exit status of child
7. Child dies completely

Exec

I Parent process may execute another program
I C: execve(filename, argv, envp)
I Assembly: syscall 59

I Passes environment variables (envp)
I Executed command takes over
I If both should run: fork first

	Processes
	System calls
	Process control

