
Lecture 21: Signals

Philipp Koehn, David Hovemeyer

March 18, 2022

601.229 Computer Systems Fundamentals



Example code

Example code for today is on course website in signals.zip



Signals



Signals

I Software-level communication between processes
I Sending the signal from one process
I Receiving the signal by another process
I ignore
I terminate
I catch signal

I Handled by kernel



Examples

Number Name Default Corresponding Event
1 SIGHUP terminate terminal line hangup
2 SIGINT terminate interrupt from keyboard
3 SIGQUIT terminate quit from keyboard
4 SIGILL terminate illegal instruction
5 SIGTRAP terminate & dump core trace trap
9 SIGKILL terminate* kill process
18 SIGCONT ignore continue process if stopped
19 SIGSTOP stop until SIGCONT* stop signal not from terminal
20 SIGTSTP stop until SIGCONT stop signal from terminal

* = SIGKILL and SIGSTOP cannot be caught



Sending Signals

I From shell with command
$ /bin/kill -9 2423

I From shell with keystroke to running process
$ start-my-process
CTRL+C
I CTRL+C: sends SIGINT
I CTRL+Z: sends SIGTSTP

I There is also a C function and an Assembly syscall



Receiving Signals

I When kernel about to continue process, checks for signals
I If there is a signal, forces process to receive signal
I Each signal has a default action
I ignore
I terminate
I terminate and dump core
I stop

I Process can also set up a signal handler for customized response



Signal Handler

I Signal handler in C
#include "csapp.h"

void sigint_handler(int sig) {
printf("Caught SIGINT\n");
exit(0);

}

int main() {
signal(SIGINT, sigint_handler);
pause();
return 0;

}
I Now, process writes "Caught SIGINT" to stdout before terminating



Signal delivery, signal masks



Signal delivery

I In general, the OS kernel could deliver a signal to a process at any time
I Delivering a signal:
I Pushing a special return address of code to restore the CPU state (so

that process can continue normal execution when signal handler returns)
I Creating stack frame for signal handler
I Setting argument registers for signal handler
I Jumping to signal handler

I Signals are normally delivered on the process’s call stack
I Really a thread’s call stack, more about threads later on

I Process may designate a special area of memory to serve as a stack for
received signals



Signals and asynchrony

I Signal delivery could occur before or after any instruction
I That means that signals are asynchronous
I “Asynchronous” means “could happen at any time” or “ordering is

unpredictable”
I Signal handlers are asynchronous with respect to the rest of the program
I This can cause strange behavior!



A C program

#include "csapp.h"

#define NCOUNT 100000000
volatile int count = 0;

int main(void) {
// count up
for (int i = 0; i < NCOUNT; i++) { count++; }
printf("count=%d\n", count);
return 0;

}

Note that “volatile” tells the compiler not to optimize away accesses to the
count variable



Compiling and executing the program

$ gcc -O -Wall -c count.c
$ gcc -o count count.o
$ ./count
count=100000000

Nothing surprising happened



Interval timers

I An interval timer is a means for notifying the process than an interval of
time has elapsed

I Can be “one shot” or repeating
I The setitimer system call allows the process to create an interval timer
I When the timer elapses, OS kernel sends SIGALRM signal to process
I Let’s change the program so that the handler for SIGALRM is also

incrementing the global counter



Modified version of program
#include "csapp.h"

#define NCOUNT 100000000
volatile int stop = 0, nsigs = 0, count = 0;

void sigalrm_handler(int signo) {
if (!stop) { nsigs++; count++; }

}

int main(void) {
// handle SIGALRM signal
code to set up signal handler for SIGALRM

// arrange for SIGALRM to be delivered once every millisecond
code to set up interval timer

// count up
for (int i = 0; i < NCOUNT; i++) { count++; }
code to check final counts

return 0;
}



Code to set up signal handler

// code to set up signal handler for SIGALRM
struct sigaction sa;
sigemptyset(&sa.sa_mask);
sa.sa_flags = 0;
sa.sa_handler = sigalrm_handler;
sigaction(SIGALRM, &sa, NULL);

Note that to install a signal handler, sigaction is recommended over
signal, for reasons we’ll discuss soon



Using setitimer

// code to set up interval timer
struct itimerval itv;
itv.it_interval.tv_sec = 0;
itv.it_interval.tv_usec = 1000; // 1000 microseconds = 1 millisecond
itv.it_value = itv.it_interval;
setitimer(ITIMER_REAL, &itv, NULL);

ITIMER_REAL means that the intervals are “real time” (not relative to CPU
time used by the process)



Does the final count make sense?

// code to check final counts
stop = 1; // tell signal handler to stop incrementing count and nsigs
sleep(1); // wait a bit

printf("count=%d, NCOUNT=%d, nsigs=%d\n", count, NCOUNT, nsigs);
if (count == NCOUNT + nsigs) { printf(" count makes sense\n"); }
else { printf(" anomaly detected!\n"); }

In theory, the final value of count should be NCOUNT + nsigs
I NCOUNT is the number of increments (to count) in main
I nsigs is the number of calls to the signal handler (which also increments

count)



Running the modified program

$ gcc -O -Wall -c alarm1.c
$ gcc -o alarm1 alarm1.o
$ ./alarm1
count=100000028, NCOUNT=100000000, nsigs=174

anomaly detected!

What just happened?



Asynchrony and atomicity

I When a program
I has code paths which execute asynchronously, and
I the asynchronous paths update shared data
then anomalous behavior can be observed if either process executes code
which is not atomic

I “Atomic” means “happens in its entirety, or not at all”
I Incrementing a variable is not (necessarily) atomic



Why increment is not atomic

I The statement count++; really means
1: tmp = count;
2: tmp = tmp + 1;
3: count = tmp;

where tmp is a register
I If count is updated by code executing asynchronously, the updated value

could be overwritten by step 3
I The anomaly in our program execution shows this happening (the final

value of count doesn’t reflect all of the increments)



Zoom poll!

Assume:
I count is a global variable whose

initial value is 0
I tmp and tmp2 are registers

Also, assume the following two sequences
of operations are executed asynchronously:

// sequence 1
tmp = count;
tmp = tmp + 1;
count = tmp;

// sequence 2
tmp2 = count;
tmp2 = tmp2 + 1;
count = tmp2;

After both sequence 1 and sequence 2
complete, what are the possible final
values of count?

A. 0
B. 1
C. 2
D. Either 1 or 2
E. Either 0, 1, or 2



Synchronization, signal masks

I “Synchronization” means coordinating asynchronous accesses to shared
data to avoid anomalous results

I For programs using signals we can use signal masks to synchronize signal
handlers with the main program

I Signal mask = set of signals that are temporarily blocked
I OS kernel will only deliver a signal if it isn’t blocked
I Note that not all signals may be blocked
I For our example program, we can block SIGALRM to avoid the signal

handler from executing at the wrong time



Modified main loop

sigset_t mask;
sigemptyset(&mask);
sigaddset(&mask, SIGALRM);

// count up
for (int i = 0; i < NCOUNT; i++) {

sigprocmask(SIG_BLOCK, &mask, NULL);
count++;
sigprocmask(SIG_UNBLOCK, &mask, NULL);

}



Running the modified program

$ gcc -O -Wall -c alarm2.c
$ gcc -o alarm2 alarm2.o
$ ./alarm2
count=100070462, NCOUNT=100000000, nsigs=70462

count makes sense

No anomaly! However, note that the program took a very long time to run
(more than 70 seconds) due to the overhead of calling sigprocmask in the
main loop.



signal vs. sigaction

I Historically, the signal system call was used to register a signal handler
on Unix systems

I New code should use sigaction
I Why?
I Handlers registered using signal may get “unregistered” when the

signal arrives
I signal doesn’t provide any mechanism for preventing signal handlers

from being interrupted by other signals


	Signals
	Signal delivery, signal masks

