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Simplified Linking

Data
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I Each process has its code in address 0x400000
I Easy linking: Linker can establish fixed addresses



Simplified Loading

I When loading process into memory...
I Enter .data and .text section into page table

I Mark them as invalid (= not actually in RAM)
I Called memory mapping (more on that later)
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Simplified Sharing

Shared libraries used by several
processes: e.g., stdio providing
printf, scanf, open, close, ...

Not copied multiple times
into RAM
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Simplified Memory Allocation

I Process may need more memory (e.g., malloc call)
⇒ New entry in page table
I Mapped to arbitrary pages in physical memory
I Do not have to be contiguous



Memory Protection

Physical memory
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I Page may be kernel only: SUP=yes
I Page may be read-only (e.g., code)



Address translation



Address Space

I Virtual memory size: N = 2n bytes
I Physical memory size: M = 2m bytes
I Page (block of memory): P = 2p bytes
I A virtual address can be encoded in n bits



Address Translation

I Task: mapping virtual address to physical address
I virtual address (VA): used by machine code instructions
I physical address (PA): location in RAM

I Formally
MAP: VA → PA ∪ 0

where:
MAP(A) = PA if in RAM

= 0 otherwise
I Note: this happens very frequently in machine code
I We will do this in hardware: Memory Management Unit (MMU)



Basic Architecture
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Basic Architecture
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valid = 0?
-> page fault
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Page Hit
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I VA: CPU requests data at virtual address

I PTEA: look up page table entry in page table
I PTE: returns page table entry
I PA: get physical address from entry, look up in memory
I Data: returns data from memory to CPU
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Page Fault
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I update page table
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Page Fault

CPU MMU Memory
VA

CPU chip

Data

PTEA
PTE

PA
Disk

Victim page
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Page fault exception handlerException

I VA: CPU requests data at virtual address
I PTEA: look up page table entry in page table
I PTE: returns page table entry
I Exception: page not in physical memory
I Page fault exception handler

I victim page to disk
I new page to memory
I update page table

entries
I Re-do memory request



Page Miss Exception

I Complex task
I identify which page to remove from RAM (victim page)
I load page from disk to RAM
I update page table entry
I trigger do-over of instruction that caused exception

I Note
I loading into RAM very slow
I added complexity of handling in software no big deal



Zoom poll!

Given the following code:

int arr[10000], i;
for (i = 0; i<10000; i++) {

arr[i] = i;
}

Assume that the page size is 4096
bytes, and that the base address of
the array a is an exact multiple of
4096. If the access to a[i] does
not cause a page fault when i=0,
then what is the next value of i
where a page fault might occur?

A. 1
B. 512
C. 1024
D. 4096
E. None of the above



Refinements
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I On-CPU cache
→ integrate cache and virtual memory

I Slow look-up time
→ use translation lookahead buffer (TLB)

I Huge address space
→ multi-level page table

I Putting it all together
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Integrating Caches and Virtual Memory

I Note
I we claim that using on-disk memory is too slow
I having data in RAM only practical solution

I Recall
I we previously claimed that using RAM is too slow
I having data in cache only practical solution

I Both true, so we need to combine



Integrating Caches and Virtual Memory

CPU MMU
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I MMU resolves virtual address to physical address
I Physical address is checked against cache
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I Cache miss in data retrieval?
⇒ Get data from memory
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Look-Ups

I Every memory-related instruction must pass through MMU
(virtual memory look-up)

I Very frequent, this has to be very fast
I Locality to the rescue
I subsequent look-ups in same area of memory
I look-up for a page can be cached



Translation Lookup Buffer

I Same structure as cache
I Break up address into 3 parts
I lowest bits: offset in page
I middle bits: index (location) in cache
I highest bits: tag in cache

I Associative cache: more than one entry per index



Architecture
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I Translation lookup buffer (TLB) on CPU chip
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I Look up page table entry in TLB



Translation Lookup Buffer (TLB) Miss
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I Page table entry not in TLB
I Retrieve page table entry from RAM
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