
Lecture 23: Virtual Memory II

Philipp Koehn

March 30, 2022

601.229 Computer Systems Fundamentals



Memory management



One Page Table per Process

PP10

VP1
VP2

0:
1:
2:
3:

Process 1
0
1
1
0

VP1
VP2

0:
1:
2:
3:

Process 2
0
1
1
0

PP2

PP7

Physical memory

Shared page



Process Address Space

Kernel memory

User stack

Memory-mapped region 
for shared libraries

Run time heap (created by 
malloc)

Read/write segment 
(.data / .bss)

Read-only code segment 
(.init, .text., .rodata)

Stack pointer

Loaded from
executable

0

400000

ffffffff



Simplified Linking

Data
Code

400000

I Each process has its code in address 0x400000
I Easy linking: Linker can establish fixed addresses



Simplified Loading

I When loading process into memory...
I Enter .data and .text section into page table

I Mark them as invalid (= not actually in RAM)
I Called memory mapping (more on that later)



Simplified Loading

I When loading process into memory...
I Enter .data and .text section into page table
I Mark them as invalid (= not actually in RAM)

I Called memory mapping (more on that later)



Simplified Loading

I When loading process into memory...
I Enter .data and .text section into page table
I Mark them as invalid (= not actually in RAM)
I Called memory mapping (more on that later)



Simplified Sharing

Shared libraries used by several
processes: e.g., stdio providing
printf, scanf, open, close, ...

Not copied multiple times
into RAM

Shared libraries

Shared libraries

Physical memory



Simplified Memory Allocation

I Process may need more memory (e.g., malloc call)
⇒ New entry in page table
I Mapped to arbitrary pages in physical memory
I Do not have to be contiguous



Memory Protection

Physical memory

yes nono PP 6
yes yesno PP 4

VP 0
VP 1

yes yesyes PP 2VP 2

READ WRTSUP Address

yes nono PP 9
yes yesyes PP 6

VP 0
VP 1

yes yesno PP 11VP 2

READ WRTSUP Address

Process 1

Process 2

PP 0

PP 2

PP 4

PP 6

PP 9

PP 11

I Page may be kernel only: SUP=yes
I Page may be read-only (e.g., code)



Address translation



Address Space

I Virtual memory size: N = 2n bytes
I Physical memory size: M = 2m bytes
I Page (block of memory): P = 2p bytes
I A virtual address can be encoded in n bits



Address Translation

I Task: mapping virtual address to physical address
I virtual address (VA): used by machine code instructions
I physical address (PA): location in RAM

I Formally
MAP: VA → PA ∪ 0

where:
MAP(A) = PA if in RAM

= 0 otherwise
I Note: this happens very frequently in machine code
I We will do this in hardware: Memory Management Unit (MMU)



Basic Architecture

page table 
base register

Virtual address

Physical address



Basic Architecture

page table 
base register

Valid Physical page number

Virtual address

Physical address



Basic Architecture

page table 
base register

virtual page number page offset

physical page number page offset

Valid Physical page number

Virtual address

Physical address



Basic Architecture

page table 
base register

virtual page number page offset

physical page number page offset

Valid Physical page number

valid = 0?
-> page fault

Virtual address

Physical address



Page Hit

CPU MMU Memory
VA

CPU chip

Data

PTEA
PTE

PA

I VA: CPU requests data at virtual address

I PTEA: look up page table entry in page table
I PTE: returns page table entry
I PA: get physical address from entry, look up in memory
I Data: returns data from memory to CPU



Page Hit

CPU MMU Memory
VA

CPU chip

Data

PTEA
PTE

PA

I VA: CPU requests data at virtual address
I PTEA: look up page table entry in page table

I PTE: returns page table entry
I PA: get physical address from entry, look up in memory
I Data: returns data from memory to CPU



Page Hit

CPU MMU Memory
VA

CPU chip

Data

PTEA
PTE

PA

I VA: CPU requests data at virtual address
I PTEA: look up page table entry in page table
I PTE: returns page table entry

I PA: get physical address from entry, look up in memory
I Data: returns data from memory to CPU



Page Hit

CPU MMU Memory
VA

CPU chip

Data

PTEA
PTE

PA

I VA: CPU requests data at virtual address
I PTEA: look up page table entry in page table
I PTE: returns page table entry
I PA: get physical address from entry, look up in memory

I Data: returns data from memory to CPU



Page Hit

CPU MMU Memory
VA

CPU chip

Data

PTEA
PTE

PA

I VA: CPU requests data at virtual address
I PTEA: look up page table entry in page table
I PTE: returns page table entry
I PA: get physical address from entry, look up in memory
I Data: returns data from memory to CPU



Page Fault

CPU MMU Memory
VA

CPU chip

PTEA
PTE

Page fault exception handlerException

Data

I VA: CPU requests data at virtual address

I PTEA: look up page table entry in page table
I PTE: returns page table entry
I Exception: page not in physical memory



Page Fault

CPU MMU Memory
VA

CPU chip

PTEA
PTE

Page fault exception handlerException

Data

I VA: CPU requests data at virtual address
I PTEA: look up page table entry in page table

I PTE: returns page table entry
I Exception: page not in physical memory



Page Fault

CPU MMU Memory
VA

CPU chip

PTEA
PTE

Page fault exception handlerException

Data

I VA: CPU requests data at virtual address
I PTEA: look up page table entry in page table
I PTE: returns page table entry

I Exception: page not in physical memory



Page Fault

CPU MMU Memory
VA

CPU chip

PTEA
PTE

Page fault exception handlerException

Data

I VA: CPU requests data at virtual address
I PTEA: look up page table entry in page table
I PTE: returns page table entry
I Exception: page not in physical memory



Page Fault

CPU MMU Memory
VA

CPU chip

PTEA
PTE

Disk

Victim page
New page

Page fault exception handlerException

Data

I VA: CPU requests data at virtual address
I PTEA: look up page table entry in page table
I PTE: returns page table entry
I Exception: page not in physical memory
I Page fault exception handler

I victim page to disk
I new page to memory
I update page table

entries



Page Fault

CPU MMU Memory
VA

CPU chip

Data

PTEA
PTE

PA
Disk

Victim page
New page

Page fault exception handlerException

I VA: CPU requests data at virtual address
I PTEA: look up page table entry in page table
I PTE: returns page table entry
I Exception: page not in physical memory
I Page fault exception handler

I victim page to disk
I new page to memory
I update page table

entries
I Re-do memory request



Page Miss Exception

I Complex task
I identify which page to remove from RAM (victim page)
I load page from disk to RAM
I update page table entry
I trigger do-over of instruction that caused exception

I Note
I loading into RAM very slow
I added complexity of handling in software no big deal



Zoom poll!

Given the following code:

int arr[10000], i;
for (i = 0; i<10000; i++) {

arr[i] = i;
}

Assume that the page size is 4096
bytes, and that the base address of
the array a is an exact multiple of
4096. If the access to a[i] does
not cause a page fault when i=0,
then what is the next value of i
where a page fault might occur?

A. 1
B. 512
C. 1024
D. 4096
E. None of the above



Refinements



Refinements

I On-CPU cache
→ integrate cache and virtual memory

I Slow look-up time
→ use translation lookahead buffer (TLB)

I Huge address space
→ multi-level page table

I Putting it all together



Refinements

I On-CPU cache
→ integrate cache and virtual memory

I Slow look-up time
→ use translation lookahead buffer (TLB)

I Huge address space
→ multi-level page table

I Putting it all together



Integrating Caches and Virtual Memory

I Note
I we claim that using on-disk memory is too slow
I having data in RAM only practical solution

I Recall
I we previously claimed that using RAM is too slow
I having data in cache only practical solution

I Both true, so we need to combine



Integrating Caches and Virtual Memory

CPU MMU
L1

CacheVA

CPU chip

Data

PTEA
PTE

PA
DRAM

I MMU resolves virtual address to physical address
I Physical address is checked against cache



Integrating Caches and Virtual Memory

CPU MMU
L1

CacheVA

CPU chip

Data

PTEA
PTE

PA
DRAM

PTEA
PTE

miss?

I Cache miss in page table retrieval?
⇒ Get page table from memory



Integrating Caches and Virtual Memory

CPU MMU
L1

CacheVA

CPU chip

Data

PTEA
PTE

PA
DRAM

PTEA
PTE

PA
Data

miss?

miss?

I Cache miss in data retrieval?
⇒ Get data from memory



Refinements

I On-CPU cache
→ integrate cache and virtual memory

I Slow look-up time
→ use translation lookahead buffer (TLB)

I Huge address space
→ multi-level page table

I Putting it all together



Look-Ups

I Every memory-related instruction must pass through MMU
(virtual memory look-up)

I Very frequent, this has to be very fast
I Locality to the rescue
I subsequent look-ups in same area of memory
I look-up for a page can be cached



Translation Lookup Buffer

I Same structure as cache
I Break up address into 3 parts
I lowest bits: offset in page
I middle bits: index (location) in cache
I highest bits: tag in cache

I Associative cache: more than one entry per index



Architecture

CPU MMU Memory
VA

CPU chip

Data

PA

TLB

I Translation lookup buffer (TLB) on CPU chip



Translation Lookup Buffer (TLB) Hit

CPU MMU Memory
VA

CPU chip

Data

PA

TLB

PTEA PTE

I Look up page table entry in TLB



Translation Lookup Buffer (TLB) Miss

CPU MMU Memory
VA

CPU chip

Data

PTE
PTEA

PA

TLB

PTEA

I Page table entry not in TLB
I Retrieve page table entry from RAM


	Memory management
	Address translation
	Refinements

