Midterm Exam

601.229 Computer Systems Fundamentals

October 1, 2021

Complete all questions.
Use additional paper if needed.

Time: 50 minutes.

I affirm that I have completed this exam without unauthorized assistance
from any person, materials, or device.

Signed: S 6 \U\&-\ hA'AS

Print name:

Date:

Reference

Powers of 2 (y = 27):

z| 0] 12]3] 4 5 6 7 8 9 10 11 12
y| 124|816 |32 |64 | 128 | 256 | 512 | 1,024 | 2,048 | 4,096

x 13 14 15 16
y | 8,192 | 16,384 | 32,768 | 65,536

Note that in all questions concerning C:

e uint8_t is an 8-bit unsigned integer type
e uint16_t is a 16-bit unsigned integer type
e uint32_t is a 32-bit unsigned integer type
e int8_t is an 8-bit signed two’s complement integer type
e intl6_t isa 16-bit signed two’s complement integer type
e int32_t isa 32-bit signed two’s complement integer type
x86-64 registers: Registers and sub-registers:
Callee-saved: $rbx, $rbp, 5112, R(Oegister Lov:r 32 bits LOV\Z 16 bits Lov:z 8 bits
$r13,%r14, 3715 srax %eax %ax Fal
srbx %ebx Fbx bl
Caller-saved: $r10, 3r11l $rcx Secx $cx %cl
Frdx Fedx Fdx Fdl
Return value: $rax
srbp %ebp %bp Sbpl
Arguments: $rdi, $rsi, $rdx, $rsi $esi $si $sil
$rcx, $r8, $r9 Srdi $edi $di $dil
%r8 %r8d sr8w %r8b
Note that argument registers and $r9 $r9d $row $r9b
return value register are 5rl0 sr10d sr10w 5r10b
effectively caller-saved. $rll $rlld $rllw $rllb
srl2 srl2d srl2w srl2b
3rl3 $rl3d $rl3w 3rl3b
srld $rldd rldw 3rldb
5rlb %rlbd rldw %rl5b

Stack alignment: $rsp must contain an address that is a multiple of 16 when any call
instruction is executed.

Operand size suffixes: b = 1 byte, w = 2 bytes, 1 = 4 bytes, q = 8 bytes (Examples: movb,

movw, movl, movq)

Question 1. [10 points] Show the binary (base 2) representation of the following integer
values:

e15 = F4+Y+1+)
e 225 = g4 G\ + 31+

(
—
—
—

-—

1]
o
o
o
S

Question 2. [10 points] What output is printed by the following C code? Explain briefly.

h g

107 , 1477
uint8_t a = 197; ENAY

1)

uint8_t b = 65; _ G
uint8_t sum = a + b; 1&)7- o %<6=

printf ("$u\n", (unsigned) sum);
\3 \S
oukput S | ‘

Question 3. [10 points] Show the 8-bit two’s complement representation of the following
integer values:

e51 = N+ lb+2r+) 00100\
e -107 - _\2g < 2\

” 10010\ 0

= ~\1g+ 16+ X 101

Question 4. [10 points] What output is printed by the following code? (Hint: | means
bitwise or.) Explain briefly.

intl6 t x = 32767; ——y Ot ruintl \
printf ("sd\n",

1y
TEUIGEER seks sign bk Ao 1 (adding "X - 3776%)

printf ("$d\n", x);

NS EY

Question 5. [10 points] A 32-bit IEEE 754 single precision floating point value has the
following representation:

| Sign | Exponent | Fraction |
1 bit 8 bits 23 bits

Recall that normalized floating point numbers have values +1.z x 2¥, where z is specified
by the fraction bits, and y is value of the exponent (which has a value between —126 and
127.)

This format allows all integer values in the range —¢ to ¢ (inclusive) to be represented
exactly.

State the value of ¢ = 1.2 x 2¥. First, specify the fraction (z) in base 2 (i.e., a sequence of 23
0s and 1s):

T =00000000000000000000000

Next, specify the exponent (y) in base 10:

o[A

97 Lo ,114

Optional: explain briefly.

an e*Prmw\' & 23 all s o de(iwm\ Poiv‘\' "“0 be WOV'.J Ao -\Lz
‘;‘)\"\ (ns\' e\ o\igi\s ok ¥ Lrdbion, So, al alrears \,.1\“» vw\%vn&'w\-c!
2M and \ess con be \'evl‘eSzM Qxac\'\\r

Question 6. [10 points] What output is printed by the following C program? Assume that
sizeof (int) == 4. Explain briefly.

int af4] = { 6, 7, 8, 9 };
printf ("$d\n", (int) (sa[2] - &a[0])); \ 0L ﬁ&
printf ("$d\n", (int) ((char x)&al[2] - (char x)&al[0])); i % S

Acthmdec an € poinkess i \uwg of mumber of afroy elewenks,
(e(:)w-&\ng ot element G2e. Becante Cchor elemanty ore 1 ‘o\l\-c ,
acitameC on c\or ‘Jo'm\-tfs is wn Agemg o‘ L\'HS- El et

0 ad 7 o(’ ol 0“’01 ok ink Q\MINMLg Gre < B»’L(S OP“IL

Question 7. [40 points] Consider the following C function prototype:
void add_to_vec_if_even(int32_t *vec, unsigned len, int32_t wvalue);

This function takes an array of 1en int32_t values and adds value to each of the even
values in the array. Its behavior is described by the following unit test:

int32_t datal] = { 247, -550, 582, 181 };
add_to_vec_if even (data, 4, 10);

ASSERT (247 == datal[0]); // original value was odd
ASSERT (=540 == datall]); // original value was even
ASSERT (592 == datal2]); // original value was even
ASSERT (181 == data[3]); // original value was odd

Show an x86-64 assembly language implementation of the add_to_vec_if_even func-
tion. (Continue on next page if necessary.) Hint: andl $1, Reg is a useful way to check
whether the 32-bit value in Reg is odd.

.globl add_to_vec_if_ even:
add_to_vec_1if even:

subq ?p‘(,"lorsp f wy r‘“\\\\, Newssary

Q—Ca{ (?ordi,?"rs;/*)I 70(\0 /1 %rlo \ool-m\'s o ‘Q(Mﬂ\w\» PoS\r
7 ad ot onroy

. L Ro0p
X Cw\rt lor lo, Psvd

e . Ldone

mov® (rdi), Toc 1 A
ﬂv’l {1, %r“&

ne L odvance

addd "oQ&\(, (‘7m)k)

/1 reached ond
V74 ¢ Se, dove

/] 9qefr o -?«\twe\u\'
// ;Ju. o |;’u bk vg seb
w ek g, devt wodi€y (bic volue is 634)

v add velue fo ooy eleweml-

‘Lmau:dv&c:‘: S* ”)ora;. 4 0\0V¢V\Ce -\-o V\?Y(’ e‘Q\Mev\J\-
l "

5wp -\L.pr 74 (aw‘mue ‘”r

. dee :

addq §F, Tocsy
rek

[Continue your answer to Question 7 here if necessary.]

