Midterm Exam 2
601.229 Computer Systems Fundamentals

November 5, 2021

Complete all questions.

Time: 50 minutes.

I affirm that I have completed this exam without unauthorized assistance
from any person, materials, or device.

Signed: SD‘ uhow

Print name:

Date:

Reference

Powers of 2 (y = 27):

z| 0] 12]3] 4 5 6 7 8 9 10 11 12
y| 124|816 |32 |64 | 128 | 256 | 512 | 1,024 | 2,048 | 4,096

x 13 14 15 16
y | 8,192 | 16,384 | 32,768 | 65,536

Note that in all questions concerning C:

e uint8_t is an 8-bit unsigned integer type
e uint16_t is a 16-bit unsigned integer type
e uint32_t is a 32-bit unsigned integer type
e int8_t is an 8-bit signed two’s complement integer type
e intl6_t isa 16-bit signed two’s complement integer type
e int32_t isa 32-bit signed two’s complement integer type
x86-64 registers: Registers and sub-registers:
Callee-saved: $rbx, $rbp, 5112, R(Oegister Lov:r 32 bits LOV\Z 16 bits Lov:z 8 bits
$r13,%r14, 3715 srax %eax %ax Fal
srbx %ebx Fbx bl
Caller-saved: $r10, 3r11l $rcx Secx $cx %cl
Frdx Fedx Fdx Fdl
Return value: $rax
srbp %ebp %bp Sbpl
Arguments: $rdi, $rsi, $rdx, $rsi $esi $si $sil
$rcx, $r8, $r9 Srdi $edi $di $dil
%r8 %r8d sr8w %r8b
Note that argument registers and $r9 $r9d $row $r9b
return value register are 5rl0 sr10d sr10w 5r10b
effectively caller-saved. $rll $rlld $rllw $rllb
srl2 srl2d srl2w srl2b
3rl3 $rl3d $rl3w 3rl3b
srld $rldd rldw 3rldb
5rlb %rlbd rldw %rl5b

Stack alignment: $rsp must contain an address that is a multiple of 16 when any call
instruction is executed.

Operand size suffixes: b = 1 byte, w = 2 bytes, 1 = 4 bytes, q = 8 bytes (Examples: movb,

movw, movl, movq)

Question 1. [10 points] Consider the following C++ function, which rearranges the ele-
ments of a vector of int elements so that they are in the opposite of their original order:

void reverse_int_vec (std::vector<int> &v) {
size_t size = v.size();
for (size_t i = 0; 1 < size; i++) {
// remove the last element
int last = v.back();
v.pop_back () ;

// insert the element at position 1
v.insert (v.begin() + i, last);

The following unit tests explain the expected behavior:

std::vector<int> testvec = { 1, 2, 3 };
reverse_int_vec (testvec);

assert (3 == testvec[0]);

assert (2 == testvec[[l]);

assert (1 == testvec[2]);

(a) Briefly explain why the reverse_int_vec function will execute slowly when called
on a vector with a large number of elements.

thSﬂHJ\S at an av\..\..,w«, ‘Oo‘.{\\w w o wethor requ s o\
lewants ok or pul R pornt 2l P ingerdon tv

MO N ge, o codY T F Pgﬂ\m\ Ac how wAliy PY YO s
i fo Be moek Can avern N/ for Hars ueckiow,)

(b) Briefly suggest a way of implementing reverse_int_vec that would perform better
on large vectors.

POG‘.\.\Q({ 6??” aO\MS ‘.
- ;wap Q\‘ce.l’ amd\ (6* Q,\&w\-vf\\'t} \'\Mv\ %k cwo\ ’)_\,\J
b~ (s %\MM\'S, Q\‘L-, wabl all Pa\‘m ot SW'V’Y’M

~ (0 A Lowan Ay kwwwv vetor ban opy
Li‘\l(Yo oﬁcoipv\\ Gkt in reuwed ocder

Question 2. [15 points] Consider the following code:

1: a=>b x c;
2 d=e x £f;
3: g=d - a;

Assume that all variables (a — g) are CPU registers, and that each statement can be trans-
lated to a single machine instruction.

(a) Which, if any, of these statements can be executed in parallel? Explain briefly.

slolewantt | amd L caw be xFAul corged, gine
e dependy own o S abtected b\{ e obrer

(b) Are there any ordering constraints which would require one statement to be executed
after another statement? If so, what are they? Explain briefly.

Gk—o\\&w-n\- g W‘\»S" })Q QYQ(q_gh a‘(""” Bow SJ'O\‘-UMMAB
| owmd 2, be camge ¥ woesy Hoetr TN | ST a and é_

0> SourQe opmhAS

Question 3. [15 points] A memory cache for a system with a 32-bit address space has 2048
sets, 4 blocks per set, and the block size is 128 bytes.

Sketch the format of a memory address, showing which bits of the address are the off-
set, index, and tag. (Reminder: the offset indicates the position of a specific byte in the
accessed block, and the index indicates which set of the cache is being accessed.)

Note that bit 0 is the least significant (rightmost) bit and bit 31 is the most significant

(leftmost) bit. Ig_(bikg ([biks 7 b b\ook srz.c '
— A — " —— | }1»)
F
b L inAex ofset \ s; ks
El AR Te > 2015,2”’:};1 adax
" I b.+5

-l—ba: g’l‘ “ - 7 =)4 N—.S

XS

uestion 4. [30 points] In a cache, addresses are 8 bits, blocks are 16 bytes, there are@

sets)and the cache is 2-way set associative.

Complete the following table. For each address in the Request column, indicate the tags of
cached blocks after handling the request. Addresses are specified in base-2. Assume each
request is a load, and that they execute sequentially (top row is the first in the sequence.)
All slots are initially empty. When a block is evicted, select the victim using the LRU

(Least Recently Used) replacement policy.

Llow d b are oot

Set 0
Slot 0 \ Slot 1

Set 1
Slot 0 \ Slot 1

Set 2
Slot 0 \ Slot 1

Set 3

Slot 0 \ Slot 1

empty

empty

empty | empty

empty | empty

_empty

empty

X

10

*

00

¥

00011011

*OO

10111101

¥

11001110

11111001

00001100

X00

10011000

#]0

11001011

00111111

01001010

X0l

11011100

y/

toy ‘j L fndey

g olcesS

Question 5. [15 points] Consider the following C program:

1: #include <stdio.h>

2:

3: int main(void) {

4 // read a sequence of integer values
5: // until a negative wvalue 1is read,
6: // then print the sum

7 int sum = 0, done = 0;

8: while (!done) {

9: int wvalue;
10: scanf ("sd", &value);
11: if (value < 0) { done = 1; }
12: else { sum += value; }
13: }
14: printf ("Sum is %d\n", sum);
15: return 0;
16: }

(a) At which point in this program’s execution is it most likely that the OS kernel will
suspend the execution of the program and allow another program to execute? Explain
briefly. . .
g Tha wost \\'kc\\f point Whee exeluh'on wi\l be guspg\,\&d

Mo call Yo sconf af fime 10, Fq, if Ha uter lhas nok
g tpd ony inprt, Hhe 05 Verwe will Subperd H
Pmuss un\l {upu\- s aveilable.

(b) For the point you mentioned in (a), briefly explain the most likely reason why the OS
kernel would choose to resume execution of the program.

: wo presses
‘Ie llV\PU\\' N V) (e '\ '\-‘N wéer *\rvyes‘ SbW\CHmvug a p
em&-u) A 0S5 kernel Wi\\ o‘g\\'w_r LN w«vv‘\' ol wo\b_ up

(msame) Fia S\M\)szv\M Pro(,QSS.

Question 6. [15 points] Consider the following C program:

1: #include <stdio.h>

2:

3: const int arr[] = {

4: 456, 832, 815, 920, 448, 120, 475, 346, 352, 568,
5: 486, 70, 594, 9, 111, 908, 871, 188, 159, 527
6: i

7

8: int main (void) {

9: const int *p = arr, xend = arr + 20;
10:
11: int sum = 0;
12: while (p < end) {
13: sum += *p;
14: pt++;
15: }
16: printf ("sum=%d\n", sum);
17: return 0;
18: }

When the program executes, assume that a page fault occurs in the pointer dereference
(xp) at line 13.

Briefly explain how the OS kernel will handle the page fault. Be sure to include

e How the OS kernel will find a physical page to allocate, and
e How the OS kernel will initialize the data of the physical page it maps into the
process address space

If data is read from and/or written to a storage device (hard disk or SSD), explain.

The 05 keme\l w\l choote an wwuted P‘”g‘\‘“\ Pyt (iF Hetre

o ON.) o w(\\ o‘A‘(OOSl ?: P\/\\lg\‘ca\ Pm%& \-\w\: heon'F \b—uh
nsed NUW\\'\\[oardk S~\-0-0\\ N by WA magp ing - i frowe ‘.\-5
cortent pbdvess Spag. TF e skolen page is Ay Cie, hos
Leon wokitad ralakive b0 ibs Aok o 3Tk SSSD), b

ot will bt oo back fo Atk /SO Haw, Hu of
kel \,J§\\ reod 7L S T) ‘\"N Y\/\\(S\‘Co\\ Py T He Probrnw\
0\.0“‘ .\,(,“-5 Ao\ \,J{\\ mosY \lt(Y cowe Leown +He .wiata
S (\Pown o% = Q\‘Q("*@\)\Q {:\\g Onie P P\/\\f{ru} PM‘L
Combmning Pa cotreck Aok, R 05 Keewel W\l wmap b oinh f
sddss Spalr oF P prowss of a",m?n“a\-o. 20 $ and
(e- X e (W Pa ngkenckan WWOR conged P PNO& Conlk.

[Extra page for answers and/or scratch work.]

[Extra page for answers and/or scratch work.]

[Extra page for answers and/or scratch work.]

