Midterm Exam 3
601.229 Computer Systems Fundamentals

December 16, 2021

Complete all questions.

Time: 90 minutes.

I affirm that I have completed this exam without unauthorized assistance
from any person, materials, or device.

go\m\-\“on

Signed:

Print name:

Date:

Reference

Powers of 2 (y = 2%):

x| 0] 1]2]3] 4 5 6 7 8 9 10 11 12
y| 1|24 |8]|16 |32 |64 | 128 | 256 | 512 | 1,024 | 2,048 | 4,096

13 14 15 16
8,192 | 16,384 | 32,768 | 65,536

=

<

Note that in all questions concerning C:

* uint8_t is an 8-bit unsigned integer type

uint16_t is a 16-bit unsigned integer type

* uint32_t is a 32-bit unsigned integer type

* int8_t is an 8-bit signed two’s complement integer type
* intl6_t is a 16-bit signed two’s complement integer type
* int32_t is a 32-bit signed two’s complement integer type

x86-64 registers: Registers and sub-registers:
Callee-saved: %rbx, %rbp, %r12, Register Low 32bits Low 16 bits Low 8 bits
%r13. %rld %ris %rax %eax %ax %al
’ ’ %rbx %ebx %bx %b1
Caller-saved: %r10, %ri1 %rcx %ecx %CX %cl
Return value: %rax %rdx edx dx dl
%rbp %ebp %bp %bpl
Arguments: %rdi, %rsi, %rdx, %rsi %esi %si %sil
%rcx, %r8, %r9 %rdi %edi %6d 1 %dil
%r8 %r8d %1 8w %r8b
Note that argument registers and %r9 %rod %r 9w %r9b
return value register are %r10 %r10d %r10w %r10b
effectively caller-saved. %rill %rilld %rllw %rllb
%rl2 %rl2d %rl2w %r12b
%rl3 %rl13d %r13w %r13b
%r14 %rl4d %r 14w %r14b
%r15 %r15d %r15w %r15b

Stack alignment: %rsp must contain an address that is a multiple of 16 when any call
instruction is executed.

Operand size suffixes: b =1 byte, w = 2 bytes, 1 = 4 bytes, q = 8 bytes (Examples: movb,
movw, movl, movq)

Question 1. [20 points] On the 32-bit x86 architecture, the page size is 212 = 4096 bytes,
and there are two levels of page tables. Each page table (both the root page table and the
second-level page tables) have 1024 page table entries. Virtual addresses are 32 bits, and
each virtual page in the entire 32-bit address space can be mapped to a physical page.
Assume the bits in a virtual address are numbered 0-31, with 0 being the least significant
bit, and 31 being the most significant bit.

(a) Which bits of a virtual address are the page offset?

(b) Which bits of a virtual address are used as the index in the “root” (level 1) page table,
in order to find the page table entry leading to the level 2 page table?

(29731 melosive)

(c) Which bits of a virtual address are the index in the level 2 page table, in order to find
the page table entry leading to the mapped physical page?

1%~ > imo\@

(d) How many virtual pages are there in the overall address space? You may express this
as a power of 2 or sum of powers of 2.

2N W n n Ao
()_3 L'\a,s i nblr] LYV x F_Ilj_ < 9\ }oo\?:.s
1‘1 bytes

(e) Assume that a virtual address space maps every virtual page to a corresponding
physical page. How many page tables (at both levels) are needed? You may express this
as a power of 2 or sum of powers of 2.

l PO A (“’“}\ Af'\o\‘
TN R R R R

s—-
(CIONS pogp At 2

Question 2. [10 points] Consider the following server loop which uses processes to allow
concurrent client connections:

1: while (1) {

2: int clientfd = accept(serverfd, NULL, NULL);
3: pid_t pid = fork(Q);

4: if (pid == 0) {

5: chat_with_client(clientfd);

6: exit(0);

7: }

8: close(clientfd);

9:

}

Briefly explain the reason why the call to close is needed at line 8.

Har ¢ . bo¥n arn g d ild pro@sses hawe
\It’. C\(i\:\t S%I’J.\. opm- ‘ET\N dwila ‘)FDULSS Suf\‘.‘—“*—S M

pw-w\-‘s Flg &JLSU-'('\'MS.) Tl Pof'“v‘\' prowass munsk clogt e
(V] Pst"('\‘b", oc 2l A VCP socke b i\ S*Z\\, opem Quen
ro o\ e cliant hos [’im's\'\‘&.

Question 3. [10 points] Consider the following function, which is meant to write the
contents of a buffer in memory to a file descriptor:

// Returns 1 if successful, 0 if unsuccessful
int send_data(const void *buf, unsigned num_bytes, int fd) {
ssize_t bytes_sent = write(fd, buf, num_bytes);
if (bytes_sent >= 0 && (unsigned)bytes_sent == num_bytes) {
return 1;
} else {
return 0;
}
}

Briefly explain the most important flaw in this function, and how to fix it. (You don’t need
to show code for a fixed version.) Hint: consider that £d might refer to a TCP socket.

’YL_L o\l \No\" W\Iq\h\f not be able Ao fem A

a\l ok Kl \3\{\$S \"‘1‘*"5'\-"), i.!.) (1N S\,\of'\' wrl"’e Cd\l‘ld
sccnt. T frcRow swould all ek o & loop b |
A\ byles g Wk,

Question 4. [20 points] Consider the following partially-specified multithreaded server
implementation (note that error handling is omitted, and assume appropriate system
headers are #included):

void chat_with_client(int fd); // defined elsewhere

struct ConnInfo {

}s

void *worker(void *arg) {

}

int main(int argc, char **argv) {
int serverfd = Open_listenfd(argv[1]);
while (1) {
int clientfd = accept(serverfd, NULL, NULL);
struct ConnInfo *info = malloc(sizeof(struct ConnInfo));

pthread_t thr;
pthread_create(&thr, NULL, worker, |HERE 4);

Indicate what code should be substituted for the missing code labeled |HERE 1], |HERE 2],
|HERE 3], and/HERE 4| Assume that the chat_with_client function implements sending
data to and receiving data from the remote client.

|v\&~>9:0\\{\/\\'“" ;\I\“O

(n¥ ‘(’dq s fenck (ovmxv&n'k ko acoy;
pﬂﬂd-d&m\h (
e s FQY);

c\/\a\—_w;\fb_c‘iev\\—(iv\(.._7 g\))
cloe [\nbo—> £,
feee Cineo))
rebm NULL,

Question 5. [15 points] Assume that the message format for a network protocol is defined
as follows. Each message is a single line of text terminated by a newline (’\n’) character.
The content of a line is a code specified by an upper case letter (A’ through ’Z’), im-
mediately followed by an integer value specified as 1 and 6 digit characters (0’ through
’97).

Examples of messages: Struct data type to represent a message:
Q9 struct Message {
B55 char code;
Y90125 int value;
}

Implement the following recv_msg function so that it reads a single message from the spec-
ified file descriptor and uses the received data to fill in the contents of the struct Message
instance pointed-to by the parameter p.

Hints and specifications:

* The function should read only data that is part of one message
* It will probably be easiest to read one character at a time
* The function prototype for the read system call is
lint read(int fd, void *buf, size_t n);
* The function prototype for the atoi function (to convert a NUL-terminated string of
digits to an int value) is
’int atoi(const char *str);
* You may use the isalpha and/or isdigit functions

* You may assume that the received data is properly formatted and Ara¥ o
eecors will accwr

void recv_msg(int fd, struct Message *p) {
tanr buky
ye i CA,&\M-, gAY
P-? OOLLK‘_ &u\”"
P> Volm =0
re(»& ((4\, 9("’““1 1)) -
Unite (b 1= \nt) povelwa =0, -
pyualud = (buf -To"),

mo—&((—&, &LMG‘ 1),}

Question 6. [15 points] Consider the following operations performed by two different

threads without synchronization:

// Thread 1 // Thread 2
foo = x bar = x

foo = foo * 2 bar = bar + 1
x = foo X = bar

Assume that x is a shared variable accessible by both threads, and that its initial value
(before either thread starts) is 1. What possible final value(s) could x have after both

threads finish their operations? Explain briefly.

btk

*= fwa Wwh
(ble (412 o Ve
| %1=1)

B

(Mowd L s0eS
Y= \+\< 7,
Paetad [Qroest
= X¥3 < 4)
——

1 e
Viw, b
1°?

* w=23

Cehhresd | shorts
Y = l*-‘)_:’z}
ek 2 goetS
Y= rt\ = 3)

Question 7. [15 points] Consider the following C data type and functions:

struct SharedVec3 {

float data[3];

\o\,\\,.u,qk_ wuk -4 o k.,

s

void svec3_init(struct SharedVec3 *sv) {

for (int i = 0; i < 3; i++) { sv->data[i] = 0.0f; }
PWPQ&A.-NM*K_WL;\—(& SV=9 lock, '\)UL_)',
3

void svec3_addto(struct SharedVec3 *sv, int index, float val) {
Nl _wnkey_lodk (R, 5y =5 PYS AN

sv->data[index] += val;

p\"\ru.a- muley cunlocke (Rsv~2 \o(k—\)
}

float svec3_get(struct SharedVec3 *sv, int index) {

p\—\wtw-wuky_(o(,k (?xf\l -5 (ouY-\‘,

G(O"“ vel = wepwsn sv->data[index];
peheecd _ muday cumlocke (Xsv=7 fock)
v Va\]
}

Show how to add synchronization to the data type and functions so that it is safe for
concurrent use by multiple threads. Indicate your changes above.

[Extra page for answers and/or scratch work.]

[Extra page for answers and/or scratch work.]

[Extra page for answers and/or scratch work.]

