
Exam 3
601.229 Computer Systems Fundamentals

December 16, 2021

Complete all questions.

Time: 90 minutes.

I affirm that I have completed this exam without unauthorized assistance
from any person, materials, or device.

Signed:

Print name:

Date:

Reference

Powers of 2 (H = 2G):

G 0 1 2 3 4 5 6 7 8 9 10 11 12
H 1 2 4 8 16 32 64 128 256 512 1,024 2,048 4,096

G 13 14 15 16
H 8,192 16,384 32,768 65,536

Note that in all questions concerning C:

• uint8_t is an 8-bit unsigned integer type
• uint16_t is a 16-bit unsigned integer type
• uint32_t is a 32-bit unsigned integer type
• int8_t is an 8-bit signed two’s complement integer type
• int16_t is a 16-bit signed two’s complement integer type
• int32_t is a 32-bit signed two’s complement integer type

x86-64 registers:

Callee-saved: %rbx, %rbp, %r12,
%r13, %r14, %r15

Caller-saved: %r10, %r11

Return value: %rax

Arguments: %rdi, %rsi, %rdx,
%rcx, %r8, %r9

Note that argument registers and
return value register are
effectively caller-saved.

Registers and sub-registers:
Register Low 32 bits Low 16 bits Low 8 bits
%rax %eax %ax %al
%rbx %ebx %bx %bl
%rcx %ecx %cx %cl
%rdx %edx %dx %dl
%rbp %ebp %bp %bpl
%rsi %esi %si %sil
%rdi %edi %di %dil
%r8 %r8d %r8w %r8b
%r9 %r9d %r9w %r9b
%r10 %r10d %r10w %r10b
%r11 %r11d %r11w %r11b
%r12 %r12d %r12w %r12b
%r13 %r13d %r13w %r13b
%r14 %r14d %r14w %r14b
%r15 %r15d %r15w %r15b

Stack alignment: %rsp must contain an address that is a multiple of 16 when any call
instruction is executed.

Operand size suffixes: b = 1 byte, w = 2 bytes, l = 4 bytes, q = 8 bytes (Examples: movb,
movw, movl, movq)

Question 1. [20 points] On the 32-bit x86 architecture, the page size is 212 = 4096 bytes,
and there are two levels of page tables. Each page table (both the root page table and the
second-level page tables) has 1024 page table entries. Virtual addresses are 32 bits, and
each virtual page in the entire 32-bit address space can be mapped to a physical page.
Assume the bits in a virtual address are numbered 0–31, with 0 being the least significant
bit, and 31 being the most significant bit.

(a) Which bits of a virtual address are the page offset?

(b) Which bits of a virtual address are used as the index in the “root” (level 1) page table,
in order to find the page table entry leading to the level 2 page table?

(c) Which bits of a virtual address are the index in the level 2 page table, in order to find
the page table entry leading to the mapped physical page?

(d) How many virtual pages are there in the overall address space? You may express this
as a power of 2 or sum of powers of 2.

(e) Assume that a virtual address space maps every virtual page to a corresponding
physical page. How many page tables (at both levels) are needed? You may express this
as a power of 2 or sum of powers of 2.

Question 2. [10 points] Consider the following server loop which uses processes to allow
concurrent client connections:

1: while (1) {
2: int clientfd = accept(serverfd, NULL, NULL);
3: pid_t pid = fork();
4: if (pid == 0) {
5: chat_with_client(clientfd);
6: exit(0);
7: }
8: close(clientfd);
9: }

Briefly explain the reason why the call to close is needed at line 8.

Question 3. [10 points] Consider the following function, which is meant to write the
contents of a buffer in memory to a file descriptor:

// Returns 1 if successful, 0 if unsuccessful
int send_data(const void *buf, unsigned num_bytes, int fd) {
ssize_t bytes_sent = write(fd, buf, num_bytes);
if (bytes_sent >= 0 && (unsigned)bytes_sent == num_bytes) {
return 1;

} else {
return 0;

}
}

Briefly explain the most important flaw in this function, and how to fix it. (You don’t need
to show code for a fixed version.) Hint: consider that fdmight refer to a TCP socket.

Question 4. [20 points] Consider the following partially-specified multithreaded server
implementation (note that error handling is omitted, and assume appropriate system
headers are #included):

void chat_with_client(int fd); // defined elsewhere

struct ConnInfo {
HERE 1

};

void *worker(void *arg) {
HERE 2

}

int main(int argc, char **argv) {
int serverfd = Open_listenfd(argv[1]);
while (1) {
int clientfd = accept(serverfd, NULL, NULL);
struct ConnInfo *info = malloc(sizeof(struct ConnInfo));
HERE 3
pthread_t thr;
pthread_create(&thr, NULL, worker, HERE 4);

}
}

Indicate what code should be substituted for the missing code labeled HERE 1 , HERE 2 ,
HERE 3 , and HERE 4 . Assume that the chat_with_client function implements sending
data to and receiving data from the remote client.

Question 5. [15 points] Assume that the message format for a network protocol is defined
as follows. Each message is a single line of text terminated by a newline (’\n’) character.
The content of a line is a code specified by an upper case letter (’A’ through ’Z’), imme-
diately followed by an integer value specified as a sequence of 1 or more digit characters
(’0’ through ’9’).

Examples of messages:

Q9
B55
Y90125

Struct data type to represent a message:

struct Message {
char code;
int value;

};

Implement the following recv_msg function so that it reads a singlemessage from the spec-
ified file descriptor and uses the received data to fill in the contents of the struct Message
instance pointed-to by the parameter p.

Hints and specifications:

• The function should read only data that is part of onemessage
• It will probably be easiest to read one character at a time
• The function prototype for the read system call is
int read(int fd, void *buf, size_t n);

• The function prototype for the atoi function (to convert a NUL-terminated string of
digits to an int value) is
int atoi(const char *str);

• You may use the isalpha and/or isdigit functions
• You may assume that the received data is properly formatted and that no errors will

occur

void recv_msg(int fd, struct Message *p) {

Question 6. [10 points] Consider the following operations performed by two different
threads without synchronization:

// Thread 1 // Thread 2
foo = x bar = x
foo = foo * 2 bar = bar + 1
x = foo x = bar

Assume that x is a shared variable accessible by both threads, and that its initial value
(before either thread starts) is 1. What possible final value(s) could x have after both
threads finish their operations? Explain briefly.

Question 7. [15 points] Consider the following C data type and functions:

struct SharedVec3 {

float data[3];

};

// Initialize the SharedVec3 object before threads start using it
void svec3_init(struct SharedVec3 *sv) {

for (int i = 0; i < 3; i++) { sv->data[i] = 0.0f; }

}

void svec3_addto(struct SharedVec3 *sv, int index, float val) {

sv->data[index] += val;

}

float svec3_get(struct SharedVec3 *sv, int index) {

float value = sv->data[index];

return value;

}

Show how to add synchronization to the data type and functions so that it is safe for
concurrent use by multiple threads. Indicate your changes above.

[Extra page for answers and/or scratch work.]

[Extra page for answers and/or scratch work.]

[Extra page for answers and/or scratch work.]

