Final Exam

601.229 éomputer Systems Fundamentals

Fall 2019
Johns Hopkins University

Instructors: Philipp Koehn and David Hovemeyer

13 December 2019

Complete all questions.
Use additional paper if needed.

Time: 120 minutes.

Name of student: re‘fe rence solutyovn

Q1. MIPS 20 points

(a) [8 points] Consider the following sequence of MIPS instructions:

1: add $t0, s$tl, St2
2% add st0, $t0, st3
3: sw $t0, 0($a0)

Assume that before the sequence is executed, the correct values of st1, $t2, $t3, and
$a0 are immediately available in the register file.

Do any pipeline stalls occur in this sequence? If so, explain which stalls occur and why
they occur. If there are no stalls, briefly explain why and mention any pipeline implemen-
tation details relevant for avoiding stalls for this sequence.

No S*m“f

Rdu\&' & ndeuckom L EX can be
QTWM Yo inchruction 2 EX

R@;V\,\F bp’ l{vm&&fu\cbm,\ 2 W\V\S;’ ﬁ\So L@_

\Cz‘;u’ww"([iﬂ& \:_‘9 '—E\/\SE /V\E/\/\ bo wavde \}\j
Wg (/\mpp"?w} ar Saut %\V»q XS :’:\5 <S¢ wa‘

el 'fn (ro
/IM | TF TD B (af'{:'F;}‘ e D
T TF ID YEx Mew WLJ*
T3 T 0 Ex “Wew B

(b) [8 points] Consider the following sequence of MIPS instructions:

lw $t0, 0($a0)
lw $tl, 4($a0)
add $t2, $t0, stil
sw $t2, 8(S$a0)
lw $t3, 0($al)
lw $t4, 4($Sal)
add $t5, $t3, $t4
sw $t5, 8($al)

QO oy U W N
s ss ss ws ss es ss sw

Explain how to reorder instructions in order to avoid pipeline stalls, insofar as that is
possible. Briefly justify your answer.

Lo _sleboo Mo STALLS
lw $tv, 0(8c0)
lw $43 0(3«1)
add éﬂl, 3'+0;~¢H j pvends dorworded
o $4Y, L{N"M)
s §472, §le0)
ad & ;Hf, jh[r;nj*(‘/
Sw $+§, g(fa\”) 3 F g(;fwwrf_aj

(c) [4 points] Briefly explain why MIPS uses separate caches for instructions and data.

Q\fwm'woxkx S‘LW‘A’V\N\, l’\ﬁ\la\/‘)\ Buh//um \31:
(Aule okruekrn wird) and Mewa

(loﬂwlu‘v\f) /r*ufe'wg GQp\Lt«\ WJM)

Q2. Caches 20 points

(a) [6 points] On a system with 32 bit addresses, the data cache has 32 byte blocks, is
_4-way set associative, and is 32,768 (2'%) bytes in size (excluding tags and metadata.)

Fill in the table below to indicate the ranges of address bits where the offset, index, and
tag are located in an address, according to the cache parameters described above. Assume
that bit 0 is the least significant bit of an address, and bit 31 is the most significant bit of
the address.

Field Range of bits codnr sie =) ’

Address 0-31 g blecks= er 2 - 2’0:/024
Offfset 5-Y 93 = 2 bl sl s g bBlocks,
Index e A5l = 2F sebs S /m,k//k/ - 05l seks

Tag IS - %)

(b) [4 points] Consider the following C function:

void scaleMatrix (double matrix[ROWS] [COLS], double fac) {
for (int j = 0; 3 < COLS; J++)
for (int 1 = 0; 1 < ROWS; i++)
matrix[i] [j] == fac;

}

Assume that ROWS and COLS correctly describe the sizes of the first and second dimen-
sions of the parameter mat rix. Briefly explain (1) the performance issue with this func-
tion, and (2) how to change the code to fix the issue.

Png Y SSiae . Ewo‘)f of A ’Mf) acgesses elatnbs A
S (_olwmvx , bk el ke Sannd
co‘U\vvw\ aMV\‘l’ (00'\‘}’\\3(/&0\,\} W rlrw,mur/v

(l;/c LD mayg WA C e FOW‘W\&‘)\J/->

§o(u\h\nv b vas bR H’(!LQ[' ¢~° Ia-)(-)s, eviures se?u.wh«l

alcess rzgaﬂkrv\

4

(c) [10 points] Complete the following table. For each address in the Reguest column,
indicate the tags of cached blocks after handling the request. Addresses are 8 bits, blocks
are 8 bytes, there are 4 sets, and the cache is 2-way set associative. All slots are initially
empty. When a block is evicted, select the least-recently-used (LRU) block as the victim.

Set 0 Set 1 Set 2 Set 3
Request | Slot0 | Slot1 | Slot0 | Slot1 | Slot0 | Slot1 | Slot0 | Slot1
. empty | empty | empty | empty | empty | empty | empty | empty
10110001 o]
T0I00011 | Jp| |
100[1]}000 I |00
OOlp'glOO l Opl ¢
1001010 | 100
OlQG_Q’lll G100 |
117/14000 i '
001fLIPTT ; ool
101{10100 o) W
10010111 NP Al | oD v

Q3. x86-64 assembly, linking 20 points

(a) [10 points] Write an x86-64 assembly language function called swapInts which swaps
the values of two int variables. The C function declaration for this function would be

void swapInts(int =xa, int #*b);

Hints:

e Think about which registers the parameters will be passed in

o Think about what register(s) would be appropriate to use for temporary value(s)

e Consider that int variables are 4 bytes (32 bits), and use an appropriate operand
size suffix

Important: Your function should follow proper x86-64 Linux register use conventions. Be
sure to include the label defining the name of the function.

e So / (A\'"\\lﬂf\

SW&FTW‘\'S:
.i.l_-'lovj] (% W/PL)) 70 r '0

mov L (2-:"’:"”'\()) % 11

moVﬂ 70 r 10) (OZ”\S’:*3
W\ov/Q %r“, (‘?"rdl")

r@"‘

(b) [10 points] Consider the following x86-64 assembly language instruction:
callg some_function

Assume that some_function is not defined in the assembly language module contain-
ing this instruction. How is the address of some_function resolved (given that the
assembler cannot know the eventual address of the function), and what are the roles of
the assembler and linker in resolving the address? Explain briefly.

4§f£w: “Qf eW‘;l‘f _’\’6{0_66{,!2_ n pé‘)_ei b A’Q

S5 i)lfaoe holdar bor H cun/-emf-fy-u\m)cmowr\

add re <

'(d ' ﬁ” --ﬂ,:w(-!*-15}\{ & ({;g J‘(:.\}
A_r,rn‘j;n! oddresses ryLu

Ll'nbl\; has 019\)(01» cede
rncludin fd'm“-@_{”lﬂvlé'l“]‘t)'h .
4::/” f}wy\A 7 (:‘y('&("‘ /\’J’ relocatin~s o rf;.cc,fy

UN» ’odsziv,_Qo(aﬁdl‘ﬁ&f

Q4. Virtual Memory 20 points

(a) [8 points] In the 32 bit x86 architecture, addresses have 32 bits, pages are 4096 bytes,
and the page tables defining an address space are structured as a tree, where

e the root node is the page directory containing an array of 1024 page directory entries
containing the physical addresses of page tables, and

e each page table is an array of 1024 page table entries containing the physical addresses
of physical memory pages.

The physical pages are the leaves of the tree. Note that 4096 = 2'? and 1024 = 21°.

What is the size of the portion of the overall virtual address space corresponding to a
single page directory entry? Explain briefly.

add ss Spoatl Y 2% L\,hj
onthh PDE covers /10 <

2?1- 2-’0 2

2”0 y(ﬁ/{dfn -5(30\(/

What is the size of the portion of the overall virtual address space corresponding to a
single page table entry? Explain briefly.

ecch FPE contrals ovd Pwa,q—s\‘ucQ reg [
of pddr spev Yol by s

(b) [6 points] Consider the following sequence of x86-64 assembly instructions:

movqg %rdi, %rlo0
addg %rsi, %rl0
movqg %rl0, (%rdx)
movg $1, $%rax

S W N e

Explain (1) which instruction could cause a page fault, and (2) which instruction control
will return to once the page fault handler completes. (Assume that the page fault handler
does not terminate the running program.)

) Twfrachow 3, Ve b4 mevesy rederen el

2) é;m¥$b/ e nrng +v iwﬁéfu(#gvh % (42 f} ‘A
cavn ha M-fo(hhol wiHh Hae reference

V\/i\ré’u\ml Pa‘gr‘- W\ﬁ‘ﬁo‘lﬂ ')‘O pal 0)'!\\1 Geal P’\%/L

(c) [6 points] Briefly describe a situation in which a page fault will cause the OS kernel to
both write data to disk and also load data from disk. Use specific details as appropriate.

b q;ro()“ Al(CriS€s Mwima«ﬂaxﬂ(- 6)064, & \/A'PJ .—e:)r,n,\
(,ﬂ U adfess ('*9 oL

,Qw”" }\(,vu\t--hif V‘ﬂJ‘Pf ‘,J/\“L Ne 'ﬁ'\u PL\yf\\zal

wepnds 03[“8’“ Are f""’ﬁ“"ﬁbu

%‘ 0_$ f)/me [.,{_\ r'v‘\flj N /:'1,'.(;/‘-.,\,‘ " /)l/\a’d,Q) &VVW, [A-‘fmj""lf‘{)
EPii A;FQY} wn;LQ; &_1 &b¢$\ %ﬂ ﬂr&k_ (fUVR\Ti.))

Brom What ever ﬁﬁuﬁ, Spo e s

2. P e dk‘

s vn wwf)l i

lg P ﬁ\b“}% \Crdvvw At‘;lc o “AAJ/
7((":‘-‘""\ A ‘{"!t

\{a E"‘(J f_’} & é! L

y p£ YR G
PL“‘{ﬂ‘"rw \ g)g\ai:_ (F\EA-D) p) e (5')

hgﬁwﬁ u((egfed MLFhﬁ rmiuﬂﬂrT ~ maap QA 3?/63
9

Q5. Networks/threads 20 points

(a) [8 points] Complete the following function called chat_with_client. It imple-
ments the server’s role in the following network protocol:

e Clients will send messages consisting of 4 lower or upper case letters followed by a
newline

e For each received client message, the server will send back a response in which each
letter is converted to upper case

o As a special case, if the client sends quit followed by a newline, the session should
be ended

Example session:

Client sends: Server sends back:
CSFi CSF1I

sDon SDON

eYAY EYAY

guit

Note that client fd is a file descriptor referring to a TCP socket that can be used for
both receiving data and sending data. You may assume the existence of read_fully
and write_fully functions, which are like read and write, but will read and write
the requested number of bytes if possible. You may assume that I/O routines will not fail.
You may assume that messages sent by the client will be properly formed.

Continue on next page if necessary.

void chat_with_client (int clientfd) {
it done = O chor buf (6715
\/V\/\\\Q C’ dove) {
[Ppﬁmfudw(fyfﬂ’%{d; Lm{’ {)3
[bui"J ht]“"']'\“".‘) S_) - 9) {‘ 690‘,@:’5}

& (memc wp

iy o
el Cr Gk 1205 1945 0++) Ebub[i]= Jolover (buf 12135]

W'Aﬁ—{hﬂv((}m;ﬁ/yf Lup,~§)}

10

[Continue code for Q5 part (a) here if necessary, and note that Q5 continues to parts (b)
and (c) on the following pages]

11

(b) [8 points] Consider the following data type and functions:

typedef struct ({
int a;

1nt€:bi__,_.___‘_ SJ’TMLP re—Lreo\4_ mu‘“)(—— + /0 LL 3

} IntPair;

IntPair *intpair_create(int aval, int bval) {
IntPair *pair = malloc(sizeof (IntPair));
pair—->a = aval;
pair->b = bval
return palr,

} o _-H“P’Hread_muﬂx,im}(8(FW\F > lock, HVLL)}

—

void intpair_destroy(IntPair x*pair) {

) free (pATE)T— A pH\reo\J —mutex_ oleﬂroy (& Pm'r —> lock > 3

void intpair_ swgijntPalr *xpair) i
int tmp = pair->a; \ﬁkMLAA WW"H . |¢9¢k(g\Pmr—> }och),
pair->a pair—->b;
pair->b tmp;

} TN — fy}\/\;\eyﬂ__ MUA“(){-

void intpair_adjust (IntPair xpair, int adelta, int bdelta) {
pair->a += ade ; 1ﬂ“{£§?ﬁ;::§:?ﬁ

pair->b += bd?lta,

unlock (&,om'r — lock)i

int intpair_getsum(IntPair *pair) ({

int sum-—i%31~>a + palr >5r {bckﬂ WWJ{%;J

return sum;

| ke o]

Annotate the above code to show how to make instances of the IntPair type safe to
access from multiple threads. (I.e., show where code should be inserted.)

12

(c) [4 points] The purpose of the Internet is pictures of cats. Draw a picture of a cat.

We hope you enjoyed CSF! Have a great break!

13

B . =

e Sa i

B S

