Midterm Exam

601.229 Computer Systems Fundamentals

Spring 2020
Johns Hopkins University
Instructors: Xin Jin and David Hovemeyer

9 March 2020

Complete all questions.
Use additional paper if needed.

Time: 50 minutes.

Solution

Name of student:

Q1. Integer representation 20 points

Powers of 2 (2¥ = x):

y|l 0| 1]2]3| 4 5 6 7 8 9 10 11 12
x| 124|816 |32 64 | 128 [256 | 512 | 1,024 | 2,048 | 4,096

y| 13 14 15
= | 8,192 | 16,384 | 32,768

Assume that int8_t and int16_t are 8 and 16 bit signed integer types represented
using two’s complement, and uint8_t and uint16_t are 8 and 16 bit unsigned integer

types.
(a) [6 points] Write the binary representations of the values a, b, and c.

uint8_t a = 127, b = 128;
uintle_t ¢ = 32 * 1024;

s O
bt [0000000

c: 1000 0000 0000 0000

(b) [6 points] Write the binary representations of the values d, e, and £.

int8_t d 127;
int8_t e -120;
intl6e_t £ = e;

A o

et [00000
, T 1
T N4

S -

€L [00D (000

2

(c) [4 points] What output is printed by the following code? (Note that the cast to int
does not change the effective value of q.)

s e+, se (0000001 i

uint8_t p =(1292

int8_t g = p; H/lN‘/
printf("sd", (int) q); 1000000 |
OMFPVF
UV\Q\'(:)V\-QJ L !
o Siansd 9‘71 Iy
COWRGy .

s ra, chong. -1

(d) [4 points] What output is printed by the following code? (Note that the cast to
unsigned does not change the effective value of s.)

uintlé_t r = 267; r)_ér) /V'(JA '),K_(a - ”

uint8_t s = r;
printf ("%u", (unsigned) s);

U\FP T\

(11

Q2. Integer arithmetic 20 points

Assume that int8_t, int16_t, and int32_t are 8, 16, and 32 bit signed integer types
represented using two’s complement, and uint8_t, uintl6_t, and uint32_t are §,
16, and 32 bit unsigned integer types. Assume that signed overflow follows two’s com-
plement semantics.

noket we ore o\g;mw\fv\j
ot ¥ amd y ar

(a) [6 points] Given the following incomplete code:

uint8_t x = LY = V\D"‘ I'W\P\\‘L\H\l Pm\/\,\()“‘ﬁd
assert (x + y < x); (Fl/Tl/\l-C{l\ 'HI‘\ WOV\\A b’e
noom ﬁ\C‘vz'v\h\ C

State values for x and y that will make the assertion true.
prooram). Twshead

W = W6¢ He'N misoming B [
\/ = | \AV\Q\.%V\-UX o\rl} W\Q.h\(,-
/ T bt ansy el m‘&ik'\‘OV\

Wowl owa\ow fo O

(b) [6 points] Given the following incomplete code:

int8_t x = , Yy = ;) . 'L.
assert(x < 0); A m"V\, NS SUMIE ‘VB M/\,dl(_l
assert(y < 0); .

assert(x + y > 0); FPDVV\O‘[/\UV\ O(CU\(\S}

aindh acsuma €L
NI ot

State values for x and y that will make the assertions true.

w = - |%F
-

yui) o VR ow‘F\ pw ACCWS

‘o \/;e\(\ L7/

(c) [4 points] Consider the following C function:
intl6_t negatel6(intlée_t x)
return -x;
}

Also consider the following incomplete code:

intle_t y = ;
assert ((int32_t) negatelb6(y) != —((int32_t) vy));

State a value for y that will make the assertion true. Explain briefly.

Y= -3076%

Tl Value heg o oS v couml-vfo\/‘F ™
b bt siqned twos complewent

(d) [4 points] Consider the following incomplete function:

uint32 t times20 (uint32_t a) {

) + (a <<)

return (a <<

}

State values that can be substituted for the two blanks so that the times20 function
returns a value that is 20 times greater than its parameter a (ignoring the possibility of
overflow). Explain briefly.

Q3. x86-64 50 points

Things to know about x86-64 code:

° Arguments are passed in $rdi, $rsi, $rdx, $rcx, $r8, $r9
e The return value is returned in $rax

e $rl10and $rll are caller-saved registers, which may change as a result of a function
call (the argument registers are also effectively caller-saved)

e $rbx, $rbp,and $r12-%r15 are callee-saved: functions modifying them must save
and restore their values using pushqg and popg, and they may be assumed not to
change as a result of a function call

e Code should go in the . text section

e Global variables should go in the .bss or .data sections (. data allows data to be
initialized)

e Read-only data such as string constants should go in the . rodata section

e Operand size suffixes are b (8 bit byte), w (16 bit word), 1 (32 bit long word), and g
(64 bit quad word)

e Instructions may have at most one memory operand

e Indexed/scaled addressing is (RegA,RegB,Scale), and accesses address RegA + RegBxScale,
where Scaleis1,2,4,0r 8

Selected registers and 8 bit sub-registers: ~ Selected conditional jump instructions:

Register 8 bit sub-register Instruction Meaning
$rax $al (same pattern for jl jump if less

$rbx, $rcx, $rdx) jg jump if greater
$rdi $dil jle jump if less than or equal
$rsi $sil jge jump if greater than or equal
$r8 $r8b (same pattern for

$r9-%rlb)

Note that assigning to the 8 bit sub-register does not clear the other bits of the larger
register.

[Actual problem is on the next page.]

Write an x86-64 assembly language function called countLessThan which takes three
parameters arr, n, and val. The parameter arr is a pointer to an array of 64 bit signed
integers. The parameter n is a single 64 bit integer which indicates the number of elements
in the array that arr points to. The parameter val is a single 64 bit integer. The C function
prototype for the function is the following;:

long countlLessThan (long xarr, long n, long val);

The countLessThan function should return a count of the number of elements in the
array which are less than val.

Here are C test code showing the expected behavior of countLessThan:

long testArr([] = { -5, 6, -1, 8, 3, 8, 4, -5 };
ASSERT (4L == countLessThan (testArr, 8, 4));

Requirements and hints:

e Your function must follow correct register-use and calling conventions

e Remember that the first parameter is a pointer, and the array elements are in mem-
ory

e Index/scaled addressing may be useful

[Write your code in the next page(s).]

.section .text

.globl countLessThan
countLessThan:

gu[oﬁ ﬂgﬂ, @orff
W\O\/C($0, 970 CAX
: H‘u? '

'c gO/ 7of‘§\l
JQW31 (/ﬂbwz

cwp g %0 A %, (%edy.)

\')Cj.e_ .Laﬂq\’a’“(.t

fl/\cct %o cax
Lodvamie

M&C{, é?‘/ p?arAL

&2(({ %o FSA
)W\P L“‘o‘o

Lo

AAAC(I éﬁ’, c?bFSf
N3

. ml,‘gv\ ngcff—:Y‘/
/K Connirr XK/

/£ n <0 7’K/
/)ﬁ 1'6‘ 50, AZM */

Jf 1S o elf < \Iml’,?)é/

7k mob, dow't inc. count X/
/f ner . cawnk E/

/& odvonce 4o eyt elb K/
/¥ Qaer. n K/

ke sk Shnck X/
e retwn resull f\/\%mx*/

[Continue your answer to Q3 on this page if necessary.]

Q4. Performance and caching 10 points

(a) [5 points] Assume that on a system with 32 bit addresses, the addresses have the
following format:

| 14 bits | 10 bits | 8 bits |
tag index offset

If the cache is direct-mapped, how many bytes of data can be stored in the cache? You
may choose to express your answer as a power of 2. Explain briefly.

1" sk, | blck posel

()\5’ &;\,kes P \HOCk

LN 97 bykes

(b) [5 points] Consider the following x86-64 instructions:

imulg %rdi, %rsi
imulg %rdx, %rcx

Is it possible for these instructions to execute in parallel on a CPU with multiple non-
pipelined functional units capable of integer multiplication? Explain briefly.

becauye Hre Gre po dntn
MW&W@S befwesin Haumn

10

[Use this page for scratch work if necessary.]

11

