
Midterm Exam

601.229 Computer Systems Fundamentals

Spring 2020
Johns Hopkins University

Instructors: Xin Jin and David Hovemeyer

9 March 2020

Complete all questions.

Use additional paper if needed.

Time: 50 minutes.

Name of student:

1

Q1. Integer representation 20 points

Powers of 2 (2y = x):

y 0 1 2 3 4 5 6 7 8 9 10 11 12
x 1 2 4 8 16 32 64 128 256 512 1,024 2,048 4,096

y 13 14 15
x 8,192 16,384 32,768

Assume that int8_t and int16_t are 8 and 16 bit signed integer types represented
using two’s complement, and uint8_t and uint16_t are 8 and 16 bit unsigned integer
types.

(a) [6 points] Write the binary representations of the values a, b, and c.

uint8_t a = 127, b = 128;
uint16_t c = 32 * 1024;

(b) [6 points] Write the binary representations of the values d, e, and f.

int8_t d = 127;
int8_t e = -120;
int16_t f = e;

2

(c) [4 points] What output is printed by the following code? (Note that the cast to int
does not change the effective value of q.)

uint8_t p = 129;
int8_t q = p;
printf("%d", (int) q);

(d) [4 points] What output is printed by the following code? (Note that the cast to
unsigned does not change the effective value of s.)

uint16_t r = 267;
uint8_t s = r;
printf("%u", (unsigned) s);

3

Q2. Integer arithmetic 20 points

Assume that int8_t, int16_t, and int32_t are 8, 16, and 32 bit signed integer types
represented using two’s complement, and uint8_t, uint16_t, and uint32_t are 8,
16, and 32 bit unsigned integer types. Assume that signed overflow follows two’s com-
plement semantics.

(a) [6 points] Given the following incomplete code:

uint8_t x = , y = ;
assert(x + y < x);

State values for x and y that will make the assertion true.

(b) [6 points] Given the following incomplete code:

int8_t x = , y = ;
assert(x < 0);
assert(y < 0);
assert(x + y > 0);

State values for x and y that will make the assertions true.

4

(c) [4 points] Consider the following C function:

int16_t negate16(int16_t x) {
return -x;

}

Also consider the following incomplete code:

int16_t y = ;
assert((int32_t) negate16(y) != -((int32_t) y));

State a value for y that will make the assertion true. Explain briefly.

(d) [4 points] Consider the following incomplete function:

uint32_t times20(uint32_t a) {
return (a <<) + (a <<);

}

State values that can be substituted for the two blanks so that the times20 function
returns a value that is 20 times greater than its parameter a (ignoring the possibility of
overflow). Explain briefly.

5

Q3. x86-64 50 points

Things to know about x86-64 code:

• Arguments are passed in %rdi, %rsi, %rdx, %rcx, %r8, %r9

• The return value is returned in %rax

• %r10 and %r11 are caller-saved registers, which may change as a result of a function
call (the argument registers are also effectively caller-saved)

• %rbx, %rbp, and %r12–%r15 are callee-saved: functions modifying them must save
and restore their values using pushq and popq, and they may be assumed not to
change as a result of a function call

• Code should go in the .text section

• Global variables should go in the .bss or .data sections (.data allows data to be
initialized)

• Read-only data such as string constants should go in the .rodata section

• Operand size suffixes are b (8 bit byte), w (16 bit word), l (32 bit long word), and q
(64 bit quad word)

• Instructions may have at most one memory operand

• Indexed/scaled addressing is (RegA,RegB,Scale), and accesses address RegA + RegB×Scale,
where Scale is 1, 2, 4, or 8

Selected registers and 8 bit sub-registers:

Register 8 bit sub-register
%rax %al (same pattern for

%rbx, %rcx, %rdx)
%rdi %dil
%rsi %sil
%r8 %r8b (same pattern for

%r9–%r15)

Selected conditional jump instructions:

Instruction Meaning
jl jump if less
jg jump if greater
jle jump if less than or equal
jge jump if greater than or equal

Note that assigning to the 8 bit sub-register does not clear the other bits of the larger
register.

[Actual problem is on the next page.]

6

Write an x86-64 assembly language function called countLessThan which takes three
parameters arr, n, and val. The parameter arr is a pointer to an array of 64 bit signed
integers. The parameter n is a single 64 bit integer which indicates the number of elements
in the array that arr points to. The parameter val is a single 64 bit integer. The C function
prototype for the function is the following:

long countLessThan(long *arr, long n, long val);

The countLessThan function should return a count of the number of elements in the
array which are less than val.

Here are C test code showing the expected behavior of countLessThan:

long testArr[] = { -5, 6, -1, 8, 3, 8, 4, -5 };
ASSERT(4L == countLessThan(testArr, 8, 4));

Requirements and hints:

• Your function must follow correct register-use and calling conventions

• Remember that the first parameter is a pointer, and the array elements are in mem-
ory

• Index/scaled addressing may be useful

[Write your code in the next page(s).]

7

.section .text

.globl countLessThan
countLessThan:

8

[Continue your answer to Q3 on this page if necessary.]

9

Q4. Performance and caching 10 points

(a) [5 points] Assume that on a system with 32 bit addresses, the addresses have the
following format:

14 bits 10 bits 8 bits
tag index offset

If the cache is direct-mapped, how many bytes of data can be stored in the cache? You
may choose to express your answer as a power of 2. Explain briefly.

(b) [5 points] Consider the following x86-64 instructions:

imulq %rdi, %rsi
imulq %rdx, %rcx

Is it possible for these instructions to execute in parallel on a CPU with multiple non-
pipelined functional units capable of integer multiplication? Explain briefly.

10

[Use this page for scratch work if necessary.]

11

