Lecture 3: Integer representation

David Hovemeyer

January 26, 2024
601.229 Computer Systems Fundamentals

Integer representation

Representing integers

- We've seen how to represent unsigned (nonnegative) integers
- Bit string intrepreted as a binary (base 2) number
- How to represent signed integers?
- Sign magnitude
- Ones' complement
- Two's complement
- In examples that follow, we'll use 4-bit words
- Ideas will generalize to larger word sizes

Desired features for signed representation

What we want in a representation for signed integers:

- About half of encoding space used for negative values
- Each represented integer has a unique encoding as bit string
- Straightforward way to do arithmetic

Sign magnitude representation

Let most significant bit be a sign bit: $\mathbf{0} \rightarrow$ positive, $\mathbf{1} \rightarrow$ negative

Bit string	value	Bit string	value
$\mathbf{0 0 0 0}$	0	1000	-0
$\mathbf{0 0 0 1}$	1	1001	-1
0010	2	1010	-2
$\mathbf{0 0 1 1}$	3	1011	-3
$\mathbf{0 1 0 0}$	4	$\mathbf{1 1 0 0}$	-4
$\mathbf{0 1 0 1}$	5	$\mathbf{1 1 0 1}$	-5
$\mathbf{0 1 1 0}$	6	$\mathbf{1 1 1 0}$	-6
$\mathbf{0 1 1 1}$	7	$\mathbf{1 1 1 1}$	-7

Downsides: two representations of 0, arithmetic complicated by sign bit

Ones' complement

Ones' complement: to represent -x , invert all of the bits of x

Bit string	value	Bit string	value
0000	0	1000	-7
0001	1	1001	-6
0010	2	1010	-5
0011	3	1011	-4
0100	4	1100	-3
0101	5	1101	-2
0110	6	1110	-1
0111	7	1111	-0

Downsides: two representations of 0 , slightly complicated arithmetic

Sign magnitude and ones' complement are obsolete

- Sign magnitude and ones' complement representations are not used for integer representation by modern computers
- But, sign magnitude is used in floating point representation
- The rest of this lecture will discuss two's complement

Two's complement

Two's complement: in w-bit word, the most significant bit represents -2^{w-1} E.g., when $w=4$,

Representation	Bit 3	Bit 2	Bit 1	Bit 0
Unsigned	8	4	2	1
Two's complement	-8	4	2	1

Given bit string 1011,

- Unsigned, 1011 is $8+2+1=11$
- Two's complement, 1011 is $-8+2+1=-5$

Two's complement

Two's complement: in w-bit word, the most significant bit represents -2^{w-1}

Bit string	value	Bit string	value
0000	0	1000	-8
0001	1	1001	-7
0010	2	1010	-6
0011	3	1011	-5
0100	4	1100	-4
0101	5	1101	-3
0110	6	1110	-2
0111	7	1111	-1

Note asymmetry of negative and positive ranges: -8 is represented, 8 isn't

Thinking about two's complement

Useful way to think about a w-bit two's complement representation:

- Bit $w-1$ is the sign bit, $0 \rightarrow$ positive, $1 \rightarrow$ negative
- If sign bit is 0 , usual unsigned interpretation
- If sign bit is 1 , bits $w-2 . .0$ indicate the "offset" from -2^{w-1}

Two's complement example

Given $w=4$, example bit string is 1011

- Sign bit is 1
- Offset from -2^{3} is 011 , which is $3(2+1)$
- $-8+3=-5$

So, 1011 represents -5

Clicker quiz

Clicker quiz omitted from public slides

Why two's complement?

The most important advantage of two's complement:

Why two's complement?

The most important advantage of two's complement:

Unsigned addition yields correct result for signed values!

Why two's complement?

The most important advantage of two's complement:

Unsigned addition yields correct result for signed values!

Wow!

Trying it out

Add two 8 bit integer values：
00101101

Trying it out

Add two 8 bit integer values:
00101101

11111100

Trying it out

Add two 8 bit integer values:
00101101

11111100

100101001

Trying it out

As unsigned values:

00101101	45
$+\quad 11111100$	252
100101001	297

Trying it out

As signed two's complement values:

00101101
$+\quad 11111100$
$100101001 \quad 41$

Subtraction via addition

- Two's complement negation: invert all bits, then add 1
- Example, negating 5
- Original value: 00000101
- Invert bits: 11111010
- Add one: 11111011
- Value is $-128+64+32+16+8+2+1=-5$
- $a-b$ can be computed as $a+-b$
- I.e., invert b, then add to a

Sign extension

- Sometimes it is necessary to increase the number of bits in the representation of a signed integer
- E.g., type cast or implicit conversion of a 16 bit short value to a 32 bit int value
- In two's complement, this can be accomplished by sign extension: replicate the original sign bit as many times as necessary
- This preserves the numeric value!
- Processors typically have dedicated instructions to perform sign extension

Sign extension example

Example: extend 4 bit two's complement values 1011 and 0011 to 8 bits

Number of bits	Bit string	Meaning
4	$\underline{1011}$	$-8+2+1=-5$
8	$\mathbf{1 1 1 1} \underline{1011}$	$-128+64+32+16+8+2+1=-5$
4	$\underline{0011}$	$2+1=3$
8	$\mathbf{0 0 0 0} 0011$	$2+1=3$

Sign extension example program

```
#include <stdio.h>
void printbits(int x, int n) {
    for (int i = n-1; i >= 0; i--) {
        putchar(x & (1 << i) ? '1': '0');
    }
    putchar('\n');
}
int main(void) {
    short s = -27987;
    int i = (int) s; // <-- sign extension occurs here
    printf("%*c", 16, ' ');
    printbits(s, 16);
    printbits(i, 32);
    return 0;
}
```


Sign extension example program (output)

\$ gcc signext.c
\$./a.out
1001001010101101
11111111111111111001001010101101

Clicker quiz!

Clicker quiz omitted from public slides

Extending unsigned values

Extending the representation of an unsigned value is straightforward: unconditionally pad with 0 bits

Example: 4 bit unsigned value $1011=8+2+1=11$
As an 8 bit unsigned value, $00001011=8+2+1=11$

General observation

In general, increasing the number of bits in the representation of an integer (signed or unsigned) will preserve its value

Truncation

- Truncation: reducing the number of bits in the representation of an integer
- In general, this will lose information and potentially change the value
- Truncation is done by chopping off bits from the left side of the bit string
- Whatever remains is the new representation

Truncation example

Example: convert signed 8 bit integer -14 to a 4 bit signed integer

Number of bits	Bit string	Meaning
8	11110010	$-128+64+32+16+2=-14$
4	0010	2

Truncation example program

```
#include <stdio.h>
void printbits(int x, int n) {
    for (int i = n-1; i >= 0; i--) {
            putchar(x & (1 << i) ? '1' : '0');
    }
    putchar('\n');
}
int main(void) {
    short s = -129;
    char c = s; // <-- truncation occurs here
    printf("s=%d, c=%d\n", s, c);
    printbits(s, 16);
    printf("%*c", 8, ' ');
    printbits(c, 8);
    return 0;
}
```


Truncation example program (output)

\$ gcc truncate.c
\$./a.out
$\mathrm{s}=-129, \mathrm{c}=127$
1111111101111111
01111111

Explanation:

- short is a 16 bit signed type, char ${ }^{1}$ is a signed 8 bit type
- After truncation from 16 to 8 bits, the sign bit was 0 , so the resulting value became positive
- Look at the bit representations - convince yourself the values output by printf make sense!

[^0]
Conversions between signed and unsigned

- Another important type of conversion is between signed and unsigned values
- Fundamentally, data in the computer's memory has no inherent meaning
- It is up to the program to decide how to interpret data
- Conversions between signed and unsigned (without changing the number of bits) do not change the underlying representation as bits

Signed/unsigned conversion examples

Example: bit pattern 10010110 as signed and unsigned 8 bit integer values
Signed: $-128+16+4+2=-106$
Unsigned: $128+16+4+2=150$

Signed/unsigned conversion example program

```
#include <stdio.h>
unsigned char parsebits(const char *s) {
    unsigned char val = 0;
    char c;
    while ((c = *s++)) {
        val <<= 1;
        if (c == '1') { val |= 1; }
    }
    return val;
}
int main(void) {
    unsigned char uc = parsebits("10010110");
    char c = (char) uc; // <-- conversion from unsigned to signed
    printf("%u %d\n", uc, c);
    return 0;
}
```


Signed/unsigned conversion example program (output)

\$ gcc convert.c
\$./a.out
150-106

Considerations for writing programs

Programming considerations

- Semantics of integer values and data types can be surprisingly subtle
- C and C++ further complicate matters in several ways:
- Data type sizes vary
- Integer representation not actually specified by the language!
- Some operations the program could perform have semantics that are implementation-defined or (worse) undefined
- Recommendation: be very careful!

Implicit conversions

- In C, there are many contexts in which implicit conversions will occur - Including ones where information can be lost!
- It's important to know where implicit conversions happen and to understand their effects
- It's not a bad idea to use explicit type casts so that conversions are explicit, even if they aren't strictly necessary
- Semantics of program are more obvious, avoid unintended behaviors

Sign extension

- Sign extension can sometimes have surprising consequences (bits that you thought would be 0 become 1)
- Values belonging to unsigned types (unsigned char, unsigned short, etc.) are never sign extended

[^0]: ${ }^{1}$ Compiler-dependent, tested with gcc 7.4.0 on $\times 86-64$ Linux

