Lecture 5: Floating point

Philipp Koehn, David Hovemeyer

January 31, 2024
601.229 Computer Systems Fundamentals

Floating point numbers

Numbers

－So far，we only dealt with integers
－But there are other types of numbers

Numbers

- So far, we only dealt with integers
- But there are other types of numbers
- Rational numbers (from ratio \simeq fraction)
- $3 / 4=0.75$
- $10 / 3=3.33333333 \ldots$.

Numbers

- So far, we only dealt with integers
- But there are other types of numbers
- Rational numbers (from ratio \simeq fraction)
- $3 / 4=0.75$
- $10 / 3=3.33333333 \ldots$.
- Real numbers
- $\pi=3.14159265 \ldots$
- $\mathrm{e}=2.71828182 \ldots$

Very Large Numbers

- Distance of sun and earth

$$
150,000,000,000 \text { meters }
$$

- Scientific notation

$$
1.5 \times 10^{11} \text { meters }
$$

- Another example: number of atoms in 12 gram of carbon-12 (1 mol)

$$
6.022140857 \times 10^{23}
$$

Binary Numbers in Scientific Notation

- Example binary number (π again)

$$
11.0010010001
$$

- Scientific notation

$$
1.10010010001 \times 2^{1}
$$

- General form

$$
1 . \mathrm{x} \times 2^{\mathrm{y}}
$$

Representation

- IEEE 754 floating point standard
- Uses 4 bytes

- Exponent is offset with a bias of 127
e.g. $2^{-6} \rightarrow$ exponent $=-6+127=121$

Conversion into Binary

- $\pi=3.14159265$
- Number before period: $3_{10}=11_{2}$
- Conversion of fraction .14159265

Conversion into Binary

- $\pi=3.14159265$
- Number before period: $3_{10}=11_{2}$
- Conversion of fraction . 14159265

Digit Calculation

$$
0.14159265 \times 2 \downarrow
$$

Conversion into Binary

- $\pi=3.14159265$
- Number before period: $3_{10}=11_{2}$
- Conversion of fraction .14159265

Digit Calculation
$0.14159265 \times 2 \downarrow$
$0 \quad 0.2831853$

Conversion into Binary

- $\pi=3.14159265$
- Number before period: $3_{10}=11_{2}$
- Conversion of fraction .14159265

Digit Calculation

$$
0.14159265 \times 2 \downarrow
$$

$0 \quad 0.2831853 \times 2 \downarrow$
$0 \quad 0.5663706$

Conversion into Binary

- $\pi=3.14159265$
- Number before period: $3_{10}=11_{2}$
- Conversion of fraction . 14159265

Digit Calculation

$$
0.14159265 \times 2 \downarrow
$$

$0 \quad 0.2831853 \times 2 \downarrow$
$0 \quad 0.5663706 \times 2 \downarrow$
10.1327412

Conversion into Binary

- $\pi=3.14159265$
- Number before period: $3_{10}=11_{2}$
- Conversion of fraction .14159265

Digit Calculation
$0.14159265 \times 2 \downarrow$
$0 \quad 0.2831853 \times 2 \downarrow$
$0 \quad 0.5663706 \times 2 \downarrow$
$1 \quad 0.1327412 \times 2 \downarrow$
$0 \quad 0.2654824 \times 2 \downarrow$
$0 \quad 0.5309648 \times 2 \downarrow$
$10.0619296 \times 2 \downarrow$
$0 \quad 0.1238592 \times 2 \downarrow$
$0 \quad 0.2477184 \times 2 \downarrow$
$0 \quad 0.4954368 \times 2 \downarrow$
$0 \quad 0.9908736 \times 2 \rightarrow$

Digit Calculation

$1 \quad 0.9817472 \times 2 \downarrow$
$10.9634944 \times 2 \downarrow$
$10.9269888 \times 2 \downarrow$
$10.8539776 \times 2 \downarrow$
$1 \quad 0.7079552 \times 2 \downarrow$
$1 \quad 0.4159104 \times 2 \downarrow$
$0 \quad 0.8318208 \times 2 \downarrow$
$1 \quad 0.6636416 \times 2 \downarrow$
$1 \quad 0.3272832 \times 2 \downarrow$
$0 \quad 0.6545664 \times 2 \downarrow$
$1 \quad 0.3091328 \times 2$

- Binary: 11.001001000011111101101

Encoding into Representation

π

$$
1.1001001000011111101101 \times 2^{1}
$$

- Encoding

Sign	Exponent	Fraction
0	10000000	1001001000011111101101

- Note: leading 1 in fraction is omitted

Clicker quiz!

Clicker quiz omitted from public slides

See the representation of a float

```
#include <stdio.h>
int main(void) {
    float x;
    scanf("%f", &x);
    unsigned *p = (unsigned *) &x;
    for (int i = 31; i >= 0; i--) {
        printf("%c", (*p & (1 << i)) ? '1' : '0');
        if (i == 31 || i == 23) { printf(" "); }
    }
    printf("\n");
    return 0;
}
```


See the representation of a float

\$ gcc explain.c
\$ echo '-18.8203125' | ./a.out
11000001100101101001000000000000

Special Cases

- Zero

Special Cases

- Zero
- Infinity (1/0)
- Negative infinity ($-1 / 0$)

Special Cases

- Zero
- Infinity (1/0)
- Negative infinity $(-1 / 0)$
- Not a number (0/0 or $\infty-\infty$)

Encoding

Exponent Fraction Object

0
0
$1-254$
255
255
0
>0
anything
0
>0

zero
denormalized number floating point number
infinity
NaN (not a number)

(denormalized number: $0 . \mathrm{x} \times 2^{-126}$)

Clicker quiz!

Clicker quiz omitted from public slides

Double Precision

- Single precision $=4$ bytes

Sign	Exponent	Fraction
1 bit	8 bits	23 bits

- Double precision $=8$ bytes
Sign
Exponent
Fraction
1 bit
11 bits
52 bits

Addition

Addition with Scientific Notation

- Decimal example, with 4 significant digits in encoding
- Example

$$
0.1610+99.99
$$

- In scientific notation

$$
1.610 \times 10^{-1}+9.999 \times 10^{1}
$$

Addition with Scientific Notation

- Decimal example, with 4 significant digits in encoding
- Example

$$
0.1610+99.99
$$

- In scientific notation

$$
1.610 \times 10^{-1}+9.999 \times 10^{1}
$$

- Bring lower number on same exponent as higher number

$$
0.01610 \times 10^{1}+9.999 \times 10^{1}
$$

Addition with Scientific Notation

- Round to 4 significant digits

$$
0.016 \times 10^{1}+9.999 \times 10^{1}
$$

Addition with Scientific Notation

- Round to 4 significant digits

$$
0.016 \times 10^{1}+9.999 \times 10^{1}
$$

- Add fractions

$$
0.016+9.999=10.015
$$

Addition with Scientific Notation

- Round to 4 significant digits

$$
0.016 \times 10^{1}+9.999 \times 10^{1}
$$

- Add fractions

$$
0.016+9.999=10.015
$$

- Adjust exponent

$$
10.015 \times 10^{1}=1.0015 \times 10^{2}
$$

Addition with Scientific Notation

- Round to 4 significant digits

$$
0.016 \times 10^{1}+9.999 \times 10^{1}
$$

- Add fractions

$$
0.016+9.999=10.015
$$

- Adjust exponent

$$
10.015 \times 10^{1}=1.0015 \times 10^{2}
$$

- Round to 4 significant digits

$$
1.002 \times 10^{2}
$$

Binary Floating Point Addition

Numbers

$$
0.5_{10}=\frac{1}{2} 10
$$

Binary Floating Point Addition

- Numbers

$$
0.5_{10}=\frac{1}{2}_{10}=\frac{1}{2^{1}} 10
$$

Binary Floating Point Addition

Numbers

$$
0.5_{10}=\frac{1}{2}_{10}={\frac{1}{2^{1}} 10}=0.1_{2}
$$

Binary Floating Point Addition

Numbers

$$
0.5_{10}=\frac{1}{2}_{10}=\frac{1}{2^{1}} 10=0.1_{2}=1.000_{2} \times 2^{-1}
$$

Binary Floating Point Addition

Numbers

$$
\begin{aligned}
0.5_{10} & =\frac{1}{2}{ }_{10}={\frac{1}{2^{1}} 10}^{10}=0.1_{2}=1.000_{2} \times 2^{-1} \\
-0.4375_{10} & =-\frac{7}{16} 10
\end{aligned}
$$

Binary Floating Point Addition

Numbers

$$
\begin{aligned}
& 0.5_{10}=\frac{1}{2}_{10}={\frac{1}{2^{1}} 10}=0.1_{2}=1.000_{2} \times 2^{-1} \\
&-0.4375_{10}=-\frac{7}{16}{ }_{10}=-\frac{7}{2^{4}} 10
\end{aligned}
$$

Binary Floating Point Addition

- Numbers

$$
\begin{gathered}
0.5_{10}=\frac{1}{2}{ }_{10}={\frac{1}{2^{1}} 10}=0.1_{2}=1.000_{2} \times 2^{-1} \\
-0.4375_{10}=-\frac{7}{16} 10=-\frac{7}{2^{4}} 10=0.0111_{2}=-1.110_{2} \times 2^{-2}
\end{gathered}
$$

Binary Floating Point Addition

- Numbers

$$
\begin{gathered}
0.5_{10}=\frac{1}{2}_{10}={\frac{1}{2^{1}} 10}=0.1_{2}=1.000_{2} \times 2^{-1} \\
-0.4375_{10}=-\frac{7}{16}{ }_{10}=-\frac{7}{2^{4}} 10=0.0111_{2}=-1.110_{2} \times 2^{-2}
\end{gathered}
$$

- Bring lower number on same exponent as higher number

$$
-1.110 \times 2^{-2}=-0.111 \times 2^{-1}
$$

Binary Floating Point Addition

- Numbers

$$
\begin{gathered}
0.5_{10}=\frac{1}{2}_{10}={\frac{1}{2^{1}} 10}=0.1_{2}=1.000_{2} \times 2^{-1} \\
-0.4375_{10}=-\frac{7}{16}{ }_{10}=-\frac{7}{2^{4}} 10=0.0111_{2}=-1.110_{2} \times 2^{-2}
\end{gathered}
$$

- Bring lower number on same exponent as higher number

$$
-1.110 \times 2^{-2}=-0.111 \times 2^{-1}
$$

- Add the fractions

$$
1.000_{2} \times 2^{-1}+\left(-0.111 \times 2^{-1}\right)=0.001 \times 2^{-1}
$$

Binary Floating Point Addition

- Numbers

$$
\begin{gathered}
0.5_{10}=\frac{1}{2}_{10}={\frac{1}{2^{1}} 10}=0.1_{2}=1.000_{2} \times 2^{-1} \\
-0.4375_{10}=-\frac{7}{16}{ }_{10}=-\frac{7}{2^{4}} 10=0.0111_{2}=-1.110_{2} \times 2^{-2}
\end{gathered}
$$

- Bring lower number on same exponent as higher number

$$
-1.110 \times 2^{-2}=-0.111 \times 2^{-1}
$$

- Add the fractions

$$
1.000_{2} \times 2^{-1}+\left(-0.111 \times 2^{-1}\right)=0.001 \times 2^{-1}
$$

- Adjust exponent

$$
0.001 \times 2^{-1}=1.000 \times 2^{-4}
$$

Flowchart

Multiplication

Multiplication with Scientific Notation

- Example: multiply 1.110×10^{10} and 9.200×10^{-5}

Multiplication with Scientific Notation

- Example: multiply 1.110×10^{10} and 9.200×10^{-5}

$$
1.110 \times 10^{10} \times 9.200 \times 10^{-5}
$$

Multiplication with Scientific Notation

- Example: multiply 1.110×10^{10} and 9.200×10^{-5}

$$
\begin{aligned}
& 1.110 \times 10^{10} \times 9.200 \times 10^{-5} \\
& 1.110 \times 9.200 \times 10^{-5} \times 10^{10}
\end{aligned}
$$

Multiplication with Scientific Notation

- Example: multiply 1.110×10^{10} and 9.200×10^{-5}

$$
\begin{gathered}
1.110 \times 10^{10} \times 9.200 \times 10^{-5} \\
1.110 \times 9.200 \times 10^{-5} \times 10^{10} \\
1.110 \times 9.200 \times 10^{-5+10}
\end{gathered}
$$

Multiplication with Scientific Notation

- Example: multiply 1.110×10^{10} and 9.200×10^{-5}

$$
\begin{gathered}
1.110 \times 10^{10} \times 9.200 \times 10^{-5} \\
1.110 \times 9.200 \times 10^{-5} \times 10^{10} \\
1.110 \times 9.200 \times 10^{-5+10}
\end{gathered}
$$

- Add exponents

$$
-5+10=5
$$

Multiplication with Scientific Notation

- Example: multiply 1.110×10^{10} and 9.200×10^{-5}

$$
\begin{gathered}
1.110 \times 10^{10} \times 9.200 \times 10^{-5} \\
1.110 \times 9.200 \times 10^{-5} \times 10^{10} \\
1.110 \times 9.200 \times 10^{-5+10}
\end{gathered}
$$

- Add exponents

$$
-5+10=5
$$

- Multiply fractions

$$
1.110 \times 9.200=10.212
$$

Multiplication with Scientific Notation

- Example: multiply 1.110×10^{10} and 9.200×10^{-5}

$$
\begin{gathered}
1.110 \times 10^{10} \times 9.200 \times 10^{-5} \\
1.110 \times 9.200 \times 10^{-5} \times 10^{10} \\
1.110 \times 9.200 \times 10^{-5+10}
\end{gathered}
$$

- Add exponents

$$
-5+10=5
$$

- Multiply fractions

$$
1.110 \times 9.200=10.212
$$

- Adjust exponent

$$
10.212 \times 10^{5}=1.0212 \times 10^{6}
$$

Binary Floating Point Multiplication

- Example

$$
1.000 \times 2^{-1} \times-1.110 \times 2^{-2}
$$

Binary Floating Point Multiplication

- Example

$$
1.000 \times 2^{-1} \times-1.110 \times 2^{-2}
$$

- Add exponents

$$
-1+(-2)=-3
$$

Binary Floating Point Multiplication

- Example

$$
1.000 \times 2^{-1} \times-1.110 \times 2^{-2}
$$

- Add exponents

$$
-1+(-2)=-3
$$

- Multiply fractions

$$
1.000 \times-1.110=-1.110
$$

Binary Floating Point Multiplication

- Example

$$
1.000 \times 2^{-1} \times-1.110 \times 2^{-2}
$$

- Add exponents

$$
-1+(-2)=-3
$$

- Multiply fractions

$$
\begin{gathered}
1.000 \times-1.110=-1.110 \\
1000 \times 1110=1110000
\end{gathered}
$$

Binary Floating Point Multiplication

- Example

$$
1.000 \times 2^{-1} \times-1.110 \times 2^{-2}
$$

- Add exponents

$$
-1+(-2)=-3
$$

- Multiply fractions

$$
\begin{gathered}
1.000 \times-1.110=-1.110 \\
1000 \times 1110=1110000 \\
-1.110000
\end{gathered}
$$

Binary Floating Point Multiplication

- Example

$$
1.000 \times 2^{-1} \times-1.110 \times 2^{-2}
$$

- Add exponents

$$
-1+(-2)=-3
$$

- Multiply fractions

$$
\begin{gathered}
1.000 \times-1.110=-1.110 \\
1000 \times 1110=1110000 \\
-1.110000
\end{gathered}
$$

- Adjust exponent (not needed)

$$
-1.110 \times 2^{-3}
$$

Flowchart

