
Lecture 6: Machine-level program representation

David Hovemeyer

February 2, 2024

601.229 Computer Systems Fundamentals

Compiling and executing a C program

Compilation

▶ There are many high-level programming languages (Java, Python, C,
C++, ...)

▶ A computer can only directly execute machine code
▶ So, translation from high-level language code to machine code is necessary
▶ Strategies:
▶ Interpretation: a program “interprets” the high-level code and carries

out the specified computation
▶ Compilation: a compiler program translates the high-level code into

machine code
▶ Hybrid strategies are possible (e.g., Java Virtual Machine)

Compilation

▶ There are many high-level programming languages (Java, Python, C,
C++, ...)

▶ A computer can only directly execute machine code

▶ So, translation from high-level language code to machine code is necessary
▶ Strategies:
▶ Interpretation: a program “interprets” the high-level code and carries

out the specified computation
▶ Compilation: a compiler program translates the high-level code into

machine code
▶ Hybrid strategies are possible (e.g., Java Virtual Machine)

Compilation

▶ There are many high-level programming languages (Java, Python, C,
C++, ...)

▶ A computer can only directly execute machine code
▶ So, translation from high-level language code to machine code is necessary
▶ Strategies:

▶ Interpretation: a program “interprets” the high-level code and carries
out the specified computation

▶ Compilation: a compiler program translates the high-level code into
machine code

▶ Hybrid strategies are possible (e.g., Java Virtual Machine)

Compilation

▶ There are many high-level programming languages (Java, Python, C,
C++, ...)

▶ A computer can only directly execute machine code
▶ So, translation from high-level language code to machine code is necessary
▶ Strategies:
▶ Interpretation: a program “interprets” the high-level code and carries

out the specified computation

▶ Compilation: a compiler program translates the high-level code into
machine code

▶ Hybrid strategies are possible (e.g., Java Virtual Machine)

Compilation

▶ There are many high-level programming languages (Java, Python, C,
C++, ...)

▶ A computer can only directly execute machine code
▶ So, translation from high-level language code to machine code is necessary
▶ Strategies:
▶ Interpretation: a program “interprets” the high-level code and carries

out the specified computation
▶ Compilation: a compiler program translates the high-level code into

machine code

▶ Hybrid strategies are possible (e.g., Java Virtual Machine)

Compilation

▶ There are many high-level programming languages (Java, Python, C,
C++, ...)

▶ A computer can only directly execute machine code
▶ So, translation from high-level language code to machine code is necessary
▶ Strategies:
▶ Interpretation: a program “interprets” the high-level code and carries

out the specified computation
▶ Compilation: a compiler program translates the high-level code into

machine code
▶ Hybrid strategies are possible (e.g., Java Virtual Machine)

Compiling C code
Example C program:

#include <stdio.h>
#include <stdlib.h>

long times10(long x) {
long result = (x << 3) + (x << 1);
return result;

}

int main(void) {
printf("Enter value: ");
long x;
scanf("%ld", &x);
long y = times10(x);
printf("Result=%ld\n", y);
return 0;

}

Compiling a C program

cprog.c cprog.s cprog.o cprog

gcc -S cprog.c gcc -c cprog.s gcc -o cprog cprog.o

C source code Assembly code Object code Executable

Compile Assemble Link

Compile and assemble steps are often combined (convert .c to .o), but they
are still separate steps

C vs. assembly code

C code:
long times10(long x) {

long result =
(x << 3) + (x << 1);

return result;
}

Assembly code:
times10:

leaq (%rdi,%rdi), %rax
leaq (%rax,%rdi,8), %rax
ret

Assembly vs. machine code

Assembly code must be assembled into machine code:

Assembly code:
times10:

leaq (%rdi,%rdi), %rax
leaq (%rax,%rdi,8), %rax
ret

Machine code:

48 8d 04 3f
48 8d 04 f8
c3

The CPU can directly decode and execute machine instructions

x86-64 assembly programming

Why learn assembly language?

▶ Since compilers exist, why learn how to write assembly code?

▶ Have complete control over hardware
▶ Understand hardware-level program execution
▶ Important for understanding security vulnerabilities, and how to avoid

introducing them
▶ Optimize performance-critical code
▶ Implement code generators (compilers, JIT compilers)

Why learn assembly language?

▶ Since compilers exist, why learn how to write assembly code?
▶ Have complete control over hardware

▶ Understand hardware-level program execution
▶ Important for understanding security vulnerabilities, and how to avoid

introducing them
▶ Optimize performance-critical code
▶ Implement code generators (compilers, JIT compilers)

Why learn assembly language?

▶ Since compilers exist, why learn how to write assembly code?
▶ Have complete control over hardware
▶ Understand hardware-level program execution
▶ Important for understanding security vulnerabilities, and how to avoid

introducing them

▶ Optimize performance-critical code
▶ Implement code generators (compilers, JIT compilers)

Why learn assembly language?

▶ Since compilers exist, why learn how to write assembly code?
▶ Have complete control over hardware
▶ Understand hardware-level program execution
▶ Important for understanding security vulnerabilities, and how to avoid

introducing them
▶ Optimize performance-critical code

▶ Implement code generators (compilers, JIT compilers)

Why learn assembly language?

▶ Since compilers exist, why learn how to write assembly code?
▶ Have complete control over hardware
▶ Understand hardware-level program execution
▶ Important for understanding security vulnerabilities, and how to avoid

introducing them
▶ Optimize performance-critical code
▶ Implement code generators (compilers, JIT compilers)

x86-64 architecture

Selected “x86” processors
CPU Vendor Year Bits Note
8086 Intel 1978 16
80386 Intel 1985 32 32-bit, virtual memory

Pentium Intel 1993 32
Pentium Pro Intel 1995 32
Pentium III Intel 1999 32
Pentium 4 Intel 2004 32
Opteron AMD 2003 64 First 64-bit x86 (“AMD64”)

Subsequent Intel CPUs adopted the AMD64 architecture (calling it “EM64T”)

Often called “x86-64” or just “x64”

x86-64 registers

Register(s) Note
%rip Instruction pointer
%rax Function return value

%rdi, %rsi
%rbx, %rcx, %rdx

%rsp, %rbp Stack pointer, frame pointer
%r8, %r9, ..., %r15

All of these registers are 64 bits (8 bytes)

Aside from %rip and %rsp, all of these are general-purpose registers

“Sub”-registers

▶ For historical reasons (evolution of x86 architecture from 16 to 64 bits),
each data register is divided into
▶ Low byte
▶ Second lowest byte
▶ Lowest 2 bytes (16 bits)
▶ Lowest 4 bytes (32 bits)

▶ E.g., %rax register has %al, %ah, %ax, %eax:

ax
eax

alah

rax

08163263

Memory

▶ Conceptually, memory is a big array of byte-sized storage locations
▶ Each location has an address
▶ In x86-64, addresses are 64 bit, so 264 addresses
▶ In reality, there are additional details:
▶ Actual x86-64 processors don’t use all of the address bits
▶ Virtual memory creates an arbitrary mapping of address to physical

memory
▶ Virtual memory is mapped “sparsely”: only some ranges of addresses

are mapped to actual memory

A C program

#include <stdio.h>

char buf[1000];
int arr[21];

int main(void) {
int i, j;
fgets(buf, 1000, stdin);
for (i = 0; i < 21; i++)

sscanf(buf + i*2, "%2x", &arr[i]);
for (i = 0; i < 21; i++)

printf("%c%s", arr[i], (i+1)%7 == 0 ? "\n" : "");
return 0;

}

Running the C program

$ gcc -o art art.c

$./art
7C5C2D2D2D2F7C7C206F5F6F207C205C5F5E5F2F20
|\---/|
| o_o |
^/

:-)

Memory layout of C program

Using the pmap command to inspect the memory map of the running program:

29208: ./art
0000562d71c36000 4K r-x-- art
0000562d71e36000 4K r---- art
0000562d71e37000 4K rw--- art
0000562d735fc000 132K rw--- [anon]
00007f7b5b9a5000 1948K r-x-- libc-2.27.so
00007f7b5bb8c000 2048K ----- libc-2.27.so
00007f7b5bd8c000 16K r---- libc-2.27.so
00007f7b5bd90000 8K rw--- libc-2.27.so
00007f7b5bd92000 16K rw--- [anon]
00007f7b5bd96000 156K r-x-- ld-2.27.so
00007f7b5bfa0000 8K rw--- [anon]
00007f7b5bfbd000 4K r---- ld-2.27.so
00007f7b5bfbe000 4K rw--- ld-2.27.so
00007f7b5bfbf000 4K rw--- [anon]
00007fff84484000 132K rw--- [stack]
00007fff845d4000 12K r---- [anon]
00007fff845d7000 8K r-x-- [anon]
ffffffffff600000 4K r-x-- [anon]
total 4512K

Stack

▶ The stack is an extremely important runtime data structure
▶ Is a stack of activation records, a.k.a. “stack frames”
▶ A stack frame represents an in-progress function call, and contains
▶ Return address (address of instruction where control should return

when function returns)
▶ Local variables
▶ Temporary data

▶ The %rsp register is the stack pointer
▶ Contains address of “top” of stack
▶ Stack grows down (from high to low addresses), so %rsp decreases as

stack grows

Clicker quiz!

Clicker quiz omitted from public slides

Assembly language!

▶ Assembly code = sequence of instructions
▶ Executed sequentially

(kind of, see Chapter 5)
▶ Each instruction has a mnemonic (mov, push, add, etc.)
▶ Most instructions will have one or two operands that specify data values

(input and/or output)
▶ On Linux, the standard tools use “AT&T” assembly syntax
▶ Source is first operand, destination is second

Assembly language!

▶ Assembly code = sequence of instructions
▶ Executed sequentially (kind of, see Chapter 5)

▶ Each instruction has a mnemonic (mov, push, add, etc.)
▶ Most instructions will have one or two operands that specify data values

(input and/or output)
▶ On Linux, the standard tools use “AT&T” assembly syntax
▶ Source is first operand, destination is second

Assembly language!

▶ Assembly code = sequence of instructions
▶ Executed sequentially (kind of, see Chapter 5)

▶ Each instruction has a mnemonic (mov, push, add, etc.)

▶ Most instructions will have one or two operands that specify data values
(input and/or output)

▶ On Linux, the standard tools use “AT&T” assembly syntax
▶ Source is first operand, destination is second

Assembly language!

▶ Assembly code = sequence of instructions
▶ Executed sequentially (kind of, see Chapter 5)

▶ Each instruction has a mnemonic (mov, push, add, etc.)
▶ Most instructions will have one or two operands that specify data values

(input and/or output)

▶ On Linux, the standard tools use “AT&T” assembly syntax
▶ Source is first operand, destination is second

Assembly language!

▶ Assembly code = sequence of instructions
▶ Executed sequentially (kind of, see Chapter 5)

▶ Each instruction has a mnemonic (mov, push, add, etc.)
▶ Most instructions will have one or two operands that specify data values

(input and/or output)
▶ On Linux, the standard tools use “AT&T” assembly syntax
▶ Source is first operand, destination is second

Assembly code structure, labels

▶ Assembly code generally specifies both code and data
▶ Much like code written in a high level language

▶ A label marks the location of a chunk of code and/or data
▶ Syntax:

nameOfLabel:
labeled code or data

▶ When the assembly code eventually runs, its code and data are loaded
into memory

▶ So, labels are synonymous with memory addresses
▶ In general, you can use labels as memory addresses in your assembly code

Operand size suffixes

▶ You will notice that instruction mnemonics sometimes use suffixes to
indicate the operand size:

Suffix Bytes Bits Note
b 1 8 “Byte”
w 2 16 “Word”
l 4 32 “Long” word
q 8 64 “Quad” word

(Use of w to mean 16 bits shows 16-bit origins of x86)
▶ E.g., movq means move a 64 bit value
▶ You can often omit the operand size suffix, but it’s helpful for readability,

and can even catch bugs

Assembly operands

Assume count and arr are labels indicating the addresses of global variables,
R is a register, N is an immediate, S is 1, 2, 4, or 8

Type Syntax Example Note
Memory ref Addr count Content of memory location specified

by absolute memory address
Immediate $N $8, $arr $arr is address of arr
Register R %rax

Memory ref (R) (%rax) Address = %rax
Memory ref N(R) 8(%rax) Address = %rax+8
Memory ref (R,R) (%rax,%rsi) Address = %rax+%rsi
Memory ref N(R,R) 8(%rax,%rsi) Address = %rax+%rsi+8
Memory ref (,R,S) (,%rsi,4) Address = %rsi×4
Memory ref (R,R,S) (%rax,%rsi,4) Address = %rax+(%rsi×4)
Memory ref N(,R,S) 8(,%rsi,4) Address = (%rsi×4)+8
Memory ref N(R,R,S) 8(%rax,%rsi,4) Address = %rax+(%rsi×4)+8

Data movement

90% of assembly code is data movement (made-up statistic)

▶ mov: copy source operand to destination operand
▶ Register
▶ Memory location (only one operand can be memory location)
▶ Immediate value (source operand only)

▶ Stack manipulation: push and pop instructions
▶ Generally used for saving and restoring register values
▶ push: decrement %rsp by operand size, copy operand to (%rsp)
▶ pop: copy (%rsp) to operand, increment %rsp by operand size

Data movement examples

Instruction Note
movq $42, %rax Store the constant value 42 in %rax
movq %rax, %rdi Copy 8 byte value from %rax to %rdi
movl %eax, 4(%rdx) Copy 4 byte value from %eax to memory at address %rdx+4
pushq %rbp Decrement %rsp by 8,

store contents of %rbp in memory location %rsp
popq %rbp Load contents of memory location %rsp into %rbp,

increment %rsp by 8

Clicker quiz!

Clicker quiz omitted from public slides

Assigning 32 bit value to 64 bit register

▶ Each 64 bit register has an alias for the lower 32 bits
▶ %rax, %eax
▶ %rdi, %edi
▶ %r10, %r10d
▶ etc.

▶ Storing a value in the low 32 bits clears the upper 32 bits
▶ E.g.:

movq $0xffffffffffffffff, %rax /* %rax initially contains ffffffffffffffff */
movl $1, %eax /* %rax now contains 1 */

Zero-extension, sign-extension

▶ When moving a smaller source value to a larger destination,
sign-extension (copying sign bit to high bits of result) is necessary to
preserve the value of a signed value

▶ E.g., representation of -16381 as 16 bit and 32 bit values:
Bits Representation
16 1100000000000011
32 11111111111111111100000000000011

▶ Data movement with sign-extension: movsbw, movsbl, movswl, etc.
▶ E.g., movswl %ax, %edi

▶ For unsigned values, data movement with zero-extension (copying 0 into
high bits of result): movzbw, movzbl, movzwl, etc.

Example C program

#include <stdio.h>

void addLongs(long x, long y, long *p) {
*p = x + y;

}

int main(void) {
long a, b, result;
scanf("%ld", &a);
scanf("%ld", &b);
addLongs(a, b, &result);
printf("Result is %ld\n", result);
return 0;

}

Example assembly program
.section .rodata

longIntFmt:
.string "%ld"

resultFmt:
.string "Result is %ld\n"

.section .text

.globl addLongs
addLongs:

addq %rdi, %rsi
movq %rsi, (%rdx)
ret

.globl main
main:

pushq %rbp
subq $32, %rsp
movq %rsp, %rbp

movq $longIntFmt, %rdi
leaq 0(%rbp), %rsi
call scanf

movq $longIntFmt, %rdi
leaq 8(%rbp), %rsi
call scanf

movq 0(%rbp), %rdi
movq 8(%rbp), %rsi
leaq 16(%rbp), %rdx
call addLongs

movq $resultFmt, %rdi
movq 16(%rbp), %rsi
call printf

addq $32, %rsp
popq %rbp
ret

Things to note:
▶ The first three function

parameters are passed in
%rdi, %rsi, and %rdx

▶ (%rdx) means the
memory location pointed-to
by %rdx (like pointer
dereference)

▶ 8(%rbp) means the
memory location at address
%rbp+8

▶ leaq 16(%rbp), %rdx
means compute the address
%rbp+16 and store it in
%rdx (like address-of)

Example assembly program
.section .rodata

longIntFmt:
.string "%ld"

resultFmt:
.string "Result is %ld\n"

.section .text

.globl addLongs
addLongs:

addq %rdi, %rsi
movq %rsi, (%rdx)
ret

.globl main
main:

pushq %rbp
subq $32, %rsp
movq %rsp, %rbp

movq $longIntFmt, %rdi
leaq 0(%rbp), %rsi
call scanf

movq $longIntFmt, %rdi
leaq 8(%rbp), %rsi
call scanf

movq 0(%rbp), %rdi
movq 8(%rbp), %rsi
leaq 16(%rbp), %rdx
call addLongs

movq $resultFmt, %rdi
movq 16(%rbp), %rsi
call printf

addq $32, %rsp
popq %rbp
ret

Things to note:

▶ The first three function
parameters are passed in
%rdi, %rsi, and %rdx

▶ (%rdx) means the
memory location pointed-to
by %rdx (like pointer
dereference)

▶ 8(%rbp) means the
memory location at address
%rbp+8

▶ leaq 16(%rbp), %rdx
means compute the address
%rbp+16 and store it in
%rdx (like address-of)

Example assembly program
.section .rodata

longIntFmt:
.string "%ld"

resultFmt:
.string "Result is %ld\n"

.section .text

.globl addLongs
addLongs:

addq %rdi, %rsi
movq %rsi, (%rdx)
ret

.globl main
main:

pushq %rbp
subq $32, %rsp
movq %rsp, %rbp

movq $longIntFmt, %rdi
leaq 0(%rbp), %rsi
call scanf

movq $longIntFmt, %rdi
leaq 8(%rbp), %rsi
call scanf

movq 0(%rbp), %rdi
movq 8(%rbp), %rsi
leaq 16(%rbp), %rdx
call addLongs

movq $resultFmt, %rdi
movq 16(%rbp), %rsi
call printf

addq $32, %rsp
popq %rbp
ret

Things to note:
▶ The first three function

parameters are passed in
%rdi, %rsi, and %rdx

▶ (%rdx) means the
memory location pointed-to
by %rdx (like pointer
dereference)

▶ 8(%rbp) means the
memory location at address
%rbp+8

▶ leaq 16(%rbp), %rdx
means compute the address
%rbp+16 and store it in
%rdx (like address-of)

Example assembly program
.section .rodata

longIntFmt:
.string "%ld"

resultFmt:
.string "Result is %ld\n"

.section .text

.globl addLongs
addLongs:

addq %rdi, %rsi
movq %rsi, (%rdx)
ret

.globl main
main:

pushq %rbp
subq $32, %rsp
movq %rsp, %rbp

movq $longIntFmt, %rdi
leaq 0(%rbp), %rsi
call scanf

movq $longIntFmt, %rdi
leaq 8(%rbp), %rsi
call scanf

movq 0(%rbp), %rdi
movq 8(%rbp), %rsi
leaq 16(%rbp), %rdx
call addLongs

movq $resultFmt, %rdi
movq 16(%rbp), %rsi
call printf

addq $32, %rsp
popq %rbp
ret

Things to note:
▶ The first three function

parameters are passed in
%rdi, %rsi, and %rdx

▶ (%rdx) means the
memory location pointed-to
by %rdx (like pointer
dereference)

▶ 8(%rbp) means the
memory location at address
%rbp+8

▶ leaq 16(%rbp), %rdx
means compute the address
%rbp+16 and store it in
%rdx (like address-of)

Example assembly program
.section .rodata

longIntFmt:
.string "%ld"

resultFmt:
.string "Result is %ld\n"

.section .text

.globl addLongs
addLongs:

addq %rdi, %rsi
movq %rsi, (%rdx)
ret

.globl main
main:

pushq %rbp
subq $32, %rsp
movq %rsp, %rbp

movq $longIntFmt, %rdi
leaq 0(%rbp), %rsi
call scanf

movq $longIntFmt, %rdi
leaq 8(%rbp), %rsi
call scanf

movq 0(%rbp), %rdi
movq 8(%rbp), %rsi
leaq 16(%rbp), %rdx
call addLongs

movq $resultFmt, %rdi
movq 16(%rbp), %rsi
call printf

addq $32, %rsp
popq %rbp
ret

Things to note:
▶ The first three function

parameters are passed in
%rdi, %rsi, and %rdx

▶ (%rdx) means the
memory location pointed-to
by %rdx (like pointer
dereference)

▶ 8(%rbp) means the
memory location at address
%rbp+8

▶ leaq 16(%rbp), %rdx
means compute the address
%rbp+16 and store it in
%rdx (like address-of)

Example assembly program
.section .rodata

longIntFmt:
.string "%ld"

resultFmt:
.string "Result is %ld\n"

.section .text

.globl addLongs
addLongs:

addq %rdi, %rsi
movq %rsi, (%rdx)
ret

.globl main
main:

pushq %rbp
subq $32, %rsp
movq %rsp, %rbp

movq $longIntFmt, %rdi
leaq 0(%rbp), %rsi
call scanf

movq $longIntFmt, %rdi
leaq 8(%rbp), %rsi
call scanf

movq 0(%rbp), %rdi
movq 8(%rbp), %rsi
leaq 16(%rbp), %rdx
call addLongs

movq $resultFmt, %rdi
movq 16(%rbp), %rsi
call printf

addq $32, %rsp
popq %rbp
ret

Things to note:
▶ The first three function

parameters are passed in
%rdi, %rsi, and %rdx

▶ (%rdx) means the
memory location pointed-to
by %rdx (like pointer
dereference)

▶ 8(%rbp) means the
memory location at address
%rbp+8

▶ leaq 16(%rbp), %rdx
means compute the address
%rbp+16 and store it in
%rdx (like address-of)

Example assembly program (continued)
.section .rodata

longIntFmt:
.string "%ld"

resultFmt:
.string "Result is %ld\n"

.section .text

.globl addLongs
addLongs:

addq %rdi, %rsi
movq %rsi, (%rdx)
ret

.globl main
main:

pushq %rbp
subq $32, %rsp
movq %rsp, %rbp

movq $longIntFmt, %rdi
leaq 0(%rbp), %rsi
call scanf

movq $longIntFmt, %rdi
leaq 8(%rbp), %rsi
call scanf

movq 0(%rbp), %rdi
movq 8(%rbp), %rsi
leaq 16(%rbp), %rdx
call addLongs

movq $resultFmt, %rdi
movq 16(%rbp), %rsi
call printf

addq $32, %rsp
popq %rbp
ret

Things to note:
▶ 40 bytes are allocated

within main’s stack frame,
including 24 bytes for local
variables:

saved %rbp

saved %rip

result

second operand

first operand

%rbp, %rsp 0(%rbp)

8(%rbp)

16(%rbp)

unused

[higher addresses]

[lower addresses]

%rbp is used to access the
local variables

	Compiling and executing a C program
	x86-64 assembly programming

