
Lecture 10: Arrays and structs

David Hovemeyer

February 12, 2024

601.229 Computer Systems Fundamentals

Example code

All of today’s example code linked from course web page as
arraystruct.zip

Arrays

One-dimensional arrays in C

▶ Array: sequence of elements
▶ Each element is just a variable
▶ All elements have the same type, the element type
▶ Number of elements is fixed at time of array creation

▶ Elements are accessed with an integer index
▶ 0 is first element, 1 is second element, etc.

▶ Subscript operator: a[i] refers to the element at index i in array a

Arrays and pointers in C

▶ Essential requirement of array element: program must be able to
determine its address

▶ For an array, the program just needs to know the base address (address of
first element)
▶ All elements are at a fixed offset from the base address
▶ Thus, the address of any element can be computed from the base

address
▶ Address of an element is base address + offset

▶ At the machine level, addresses correspond to bytes, so to compute the
correct element offset, the array index must be multiplied by the element
size in bytes

Example C program

Code:
#include <stdio.h>

int main(void) {
int arr[3] = { 1, 2, 3 };
printf("%p\n%p\n%p\n", &arr[0], &arr[1], &arr[2]);
return 0;

}

Running the program:
$ gcc arrptr.c
$./a.out
0x7ffc822662fc
0x7ffc82266300
0x7ffc82266304

Example C program

Code:
#include <stdio.h>

int main(void) {
int arr[3] = { 1, 2, 3 };
printf("%p\n%p\n%p\n", &arr[0], &arr[1], &arr[2]);
return 0;

}

Running the program:
$ gcc arrptr.c
$./a.out
0x7ffc822662fc
0x7ffc82266300
0x7ffc82266304

Note that sizeof(int) = 4,
and array elements have
addresses which differ by 4

Pointer arithmetic

Array/pointer duality:
▶ If a is the name of an array, a can also be considered to be a pointer to

the first element of the array (i.e., the base address)

Array/pointer identities:
▶ a[i] means the same thing as *(a + i)
▶ This implies that &a[i] means the same thing as (a + i)
▶ In general, if p points to an array element
▶ p + i points to the element i positions past the one p points to
▶ p - i points to the element i positions before the one p points to

Pointer difference

▶ Say that p and q are pointers, i is an integer, and p + i = q
▶ Then it is also true that q - p = i
▶ There is a signed type called ptrdiff_t to represent the difference

between pointer values
▶ It must be a signed type since the difference could be negative

▶ C language standard only guarantees pointer difference is meaningful
when comparing pointers from the same chunk of memory (array,
malloc’ed buffer, etc.)

Clicker quiz!

Clicker quiz omitted from public slides

Clicker quiz!

Clicker quiz omitted from public slides

Accessing array elements

Goal: write a C function to compute the sum of an array of uint32_t
elements

Two approaches:
▶ Array subscript operator
▶ Use pointer as iterator

First approach

uint32_t sum_elts(uint32_t arr[], unsigned len) {
uint32_t sum = 0;
for (unsigned i = 0; i < len; i++) {

sum += arr[i];
}
return sum;

}

Second approach

uint32_t sum_elts(uint32_t arr[], unsigned len) {
uint32_t *p = arr, *end = arr + len;
uint32_t sum = 0;
while (p < end) {

sum += *p;
p++;

}
return sum;

}

Arrays in x86-64 assembly

▶ Arrays are fairly straightforward to work with in x86-64 assembly
▶ Especially if elements are 1, 2, 4, or 8 bytes in size, allowing

indexed/scaled addressing
▶ Any general purpose register can store an address (base address or

element pointer)
▶ Any general purpose register can be used as an index

sum_elts in assembly language

Two implementations of the sum_elts function (C versions shown earlier)

C function prototype:
uint32_t sum_elts(uint32_t arr[], unsigned len);

Recall that in C, an array parameter is really a pointer to the first element of
the argument array

Sum uint32_t elements, indexed version

sum_elts:
movl $0, %eax
movl $0, %r10d

.LsumLoop:
cmpl %esi, %r10d
jae .LsumLoopDone
addl (%rdi,%r10,4), %eax
incl %r10d
jmp .LsumLoop

.LsumLoopDone:
ret

Sum uint32_t elements, indexed version

sum_elts: <-- initially, %rdi is base addr, %esi is # elements
movl $0, %eax
movl $0, %r10d

.LsumLoop:
cmpl %esi, %r10d
jae .LsumLoopDone
addl (%rdi,%r10,4), %eax
incl %r10d
jmp .LsumLoop

.LsumLoopDone:
ret

Sum uint32_t elements, indexed version

sum_elts:
movl $0, %eax <-- initialize sum in %eax
movl $0, %r10d

.LsumLoop:
cmpl %esi, %r10d
jae .LsumLoopDone
addl (%rdi,%r10,4), %eax
incl %r10d
jmp .LsumLoop

.LsumLoopDone:
ret

Sum uint32_t elements, indexed version

sum_elts:
movl $0, %eax
movl $0, %r10d <-- use %r10d as index

.LsumLoop:
cmpl %esi, %r10d
jae .LsumLoopDone
addl (%rdi,%r10,4), %eax
incl %r10d
jmp .LsumLoop

.LsumLoopDone:
ret

Sum uint32_t elements, indexed version

sum_elts:
movl $0, %eax
movl $0, %r10d

.LsumLoop:
cmpl %esi, %r10d <-- see if index < n
jae .LsumLoopDone
addl (%rdi,%r10,4), %eax
incl %r10d
jmp .LsumLoop

.LsumLoopDone:
ret

Sum uint32_t elements, indexed version

sum_elts:
movl $0, %eax
movl $0, %r10d

.LsumLoop:
cmpl %esi, %r10d
jae .LsumLoopDone <-- if not, done with loop
addl (%rdi,%r10,4), %eax
incl %r10d
jmp .LsumLoop

.LsumLoopDone:
ret

Sum uint32_t elements, indexed version

sum_elts:
movl $0, %eax
movl $0, %r10d

.LsumLoop:
cmpl %esi, %r10d
jae .LsumLoopDone
addl (%rdi,%r10,4), %eax <-- add arr[index] to sum
incl %r10d
jmp .LsumLoop

.LsumLoopDone:
ret

Sum uint32_t elements, indexed version

sum_elts:
movl $0, %eax
movl $0, %r10d

.LsumLoop:
cmpl %esi, %r10d
jae .LsumLoopDone
addl (%rdi,%r10,4), %eax
incl %r10d <-- increment index
jmp .LsumLoop

.LsumLoopDone:
ret

Sum uint32_t elements, indexed version

sum_elts:
movl $0, %eax
movl $0, %r10d

.LsumLoop:
cmpl %esi, %r10d
jae .LsumLoopDone
addl (%rdi,%r10,4), %eax
incl %r10d
jmp .LsumLoop <-- continue loop

.LsumLoopDone:
ret

Sum uint32_t elements, indexed version

sum_elts:
movl $0, %eax
movl $0, %r10d

.LsumLoop:
cmpl %esi, %r10d
jae .LsumLoopDone
addl (%rdi,%r10,4), %eax
incl %r10d
jmp .LsumLoop

.LsumLoopDone:
ret <-- sum is in %eax

Sum uint32_t elements, element pointer version

sum_elts:
movl $0, %eax
leaq (%rdi,%rsi,4), %r10

.LsumLoop:
cmpq %r10, %rdi
jae .LsumLoopDone
addl (%rdi), %eax
addq $4, %rdi
jmp .LsumLoop

.LsumLoopDone:
ret

Sum uint32_t elements, element pointer version

sum_elts: <-- initially, %rdi is base addr, %esi is # elements
movl $0, %eax
leaq (%rdi,%rsi,4), %r10

.LsumLoop:
cmpq %r10, %rdi
jae .LsumLoopDone
addl (%rdi), %eax
addq $4, %rdi
jmp .LsumLoop

.LsumLoopDone:
ret

Sum uint32_t elements, element pointer version

sum_elts:
movl $0, %eax <-- initialize sum in %eax
leaq (%rdi,%rsi,4), %r10

.LsumLoop:
cmpq %r10, %rdi
jae .LsumLoopDone
addl (%rdi), %eax
addq $4, %rdi
jmp .LsumLoop

.LsumLoopDone:
ret

Sum uint32_t elements, element pointer version

sum_elts:
movl $0, %eax
leaq (%rdi,%rsi,4), %r10 <-- set %r10 as address past last element

.LsumLoop:
cmpq %r10, %rdi
jae .LsumLoopDone
addl (%rdi), %eax
addq $4, %rdi
jmp .LsumLoop

.LsumLoopDone:
ret

Sum uint32_t elements, element pointer version

sum_elts:
movl $0, %eax
leaq (%rdi,%rsi,4), %r10

.LsumLoop:
cmpq %r10, %rdi <-- has %rdi gone past last element?
jae .LsumLoopDone
addl (%rdi), %eax
addq $4, %rdi
jmp .LsumLoop

.LsumLoopDone:
ret

Sum uint32_t elements, element pointer version

sum_elts:
movl $0, %eax
leaq (%rdi,%rsi,4), %r10

.LsumLoop:
cmpq %r10, %rdi
jae .LsumLoopDone <-- if so, done with loop
addl (%rdi), %eax
addq $4, %rdi
jmp .LsumLoop

.LsumLoopDone:
ret

Sum uint32_t elements, element pointer version

sum_elts:
movl $0, %eax
leaq (%rdi,%rsi,4), %r10

.LsumLoop:
cmpq %r10, %rdi
jae .LsumLoopDone
addl (%rdi), %eax <-- add current element to sum
addq $4, %rdi
jmp .LsumLoop

.LsumLoopDone:
ret

Sum uint32_t elements, element pointer version

sum_elts:
movl $0, %eax
leaq (%rdi,%rsi,4), %r10

.LsumLoop:
cmpq %r10, %rdi
jae .LsumLoopDone
addl (%rdi), %eax
addq $4, %rdi <-- advance to next element
jmp .LsumLoop

.LsumLoopDone:
ret

Sum uint32_t elements, element pointer version

sum_elts:
movl $0, %eax
leaq (%rdi,%rsi,4), %r10

.LsumLoop:
cmpq %r10, %rdi
jae .LsumLoopDone
addl (%rdi), %eax
addq $4, %rdi
jmp .LsumLoop <-- continue loop

.LsumLoopDone:
ret

Sum uint32_t elements, element pointer version

sum_elts:
movl $0, %eax
leaq (%rdi,%rsi,4), %r10

.LsumLoop:
cmpq %r10, %rdi
jae .LsumLoopDone
addl (%rdi), %eax
addq $4, %rdi
jmp .LsumLoop

.LsumLoopDone:
ret <-- sum is in %eax

Which approach is better?

▶ If element size is 1, 2, 4, or 8, then either approach is fine
▶ Otherwise, the element pointer approach may be preferable (since

indexed/scaled addressing can’t be used as easily)

Multidimensional arrays

▶ Multidimensional arrays in C are laid
out in row-major order

▶ Example 2-D array:
int grid[3][4];

▶ By convention, first dimension is
considered “rows”, second dimension
is considered “columns”

Array structure:

Allocation of elements in
memory:

Multidimensional arrays

▶ Multidimensional arrays in C are laid
out in row-major order

▶ Example 2-D array:
int grid[3][4];

▶ By convention, first dimension is
considered “rows”, second dimension
is considered “columns”

Array structure:

Allocation of elements in
memory:

Observation: elements within each
row are sequential in memory

Accessing elements of multidimensional arrays

Typical loop to iterate over elements of 2-D array:
for (int i = 0; i < NROWS; i++) {

for (int j = 0; j < NCOLS; j++) {
/* do something with arr[i][j] */

}
}

Strategy to access elements:
▶ Each iteration of outer loop computes address of first element of row

(arr[i][0])
▶ The inner loop can then treat arr[i] as a one-dimensional array
▶ Various optimizations are possible
▶ For example, loop above accesses elements sequentially in memory,

could treat the 2-D array as a 1-D array with NROWS × NCOLS elements

Structs

Structs

▶ A struct (a.k.a. “record”) is a heterogenous data type consisting of an
arbitrary number of fields with arbitrary types

▶ To access a field within a struct instance, need to know
▶ the base address of the struct instance
▶ the offset of the field being accessed

▶ Accessing a field is similar to accessing an array element, except that each
field has a specific constant offset known at compile time

Struct example

Implementing a game:

struct Player {
int x, y;
char symbol;
short health;

};

Investigating struct layout

#include <stdio.h>

struct Player {
int x, y;
char symbol;
short health;

};

int main(void) {
printf("%lu\n", sizeof(struct Player));
return 0;

}

Investigating struct layout

#include <stdio.h>

struct Player {
int x, y;
char symbol;
short health;

};

int main(void) {
printf("%lu\n", sizeof(struct Player));
return 0;

}

What output does this
program print?

Output of program

$ gcc structlayout.c
$./a.out
12

Why 12?

Output of program

$ gcc structlayout.c
$./a.out
12

Why 12?

Alignment and padding

▶ Compiler must ensure that memory accesses are properly aligned
▶ E.g., a 4 byte int variable must have its storage allocated at an

address that is a multiple of 4
▶ When laying out the fields of a struct type, the compiler may need to add

padding before or after fields to ensure correct alignment

Clicker quiz!

Clicker quiz omitted from public slides

Investigating field offsets
#include <stdio.h>

#define OFFSET_OF(s,f) \
((unsigned) ((char*)&s.f - (char*)&s))

struct Player {
int x, y;
char symbol;
short health;

};

int main(void) {
struct Player p;
printf("x offset=%u\n", OFFSET_OF(p,x));
printf("y offset=%u\n", OFFSET_OF(p,y));
printf("symbol offset=%u\n", OFFSET_OF(p,symbol));
printf("health offset=%u\n", OFFSET_OF(p,health));
return 0;

}

Running the program

$ gcc structlayout3.c
$./a.out
x offset=0
y offset=4
symbol offset=8
health offset=10

Visualizing struct layout

Assume that the base
address of an instance of
struct Player is 1600

Visualizing struct layout

Assume that the base
address of an instance of
struct Player is 1600

Field layout

Visualizing struct layout

Assume that the base
address of an instance of
struct Player is 1600

Byte at offset 9 is
padding

Clicker quiz!

Clicker quiz omitted from public slides

Ensuring field alignment

The compiler may need to add padding at the end of the struct to guarantee
alignment of all fields

For example, if the struct type has fields requiring 8 bytes, the size of the
struct must be a multiple of 8

Accessing struct fields in assembly language

▶ Accessing struct fields in assembly language is super easy!
▶ Assuming that you have the base address of a struct instance in a

register, the field is at a fixed offset from the base address
▶ Specify that offset when making the memory reference

C example

struct Player {
int x, // offset 0

y; // offset 4
char symbol;
short health;

};

void move_player(struct Player *p, int dx, int dy) {
p->x += dx;
p->y += dy;

}

Assembly example

/* Note that first three arguments are in %rdi, %rsi, and %rdx */

move_player:
addl %esi, 0(%rdi) /* p->x += dx */
addl %edx, 4(%rdi) /* p->y += dy */
ret

Even better assembly example

/* Note that first three arguments are in %rdi, %rsi, and %rdx */

#define PLAYER_X_OFFSET 0
#define PLAYER_Y_OFFSET 4

move_player:
addl %esi, PLAYER_X_OFFSET(%rdi) /* p->x += dx */
addl %edx, PLAYER_Y_OFFSET(%rdi) /* p->y += dy */
ret

	Arrays
	Structs

