
Lecture 18: Linking

Philipp Koehn

March 8, 2024

601.229 Computer Systems Fundamentals

Hello World

#include <stdlib.h>
#include <stdio.h>

int main(void) {
printf("Hello world!\n");
return EXIT_SUCCESS;

}

Compilation

▶ Compile
$ gcc -Og hello-world.c

▶ Resulting program
$ ls -l a.out
-rwxr-xr-x. 1 phi users 8512 Nov 16 03:57 a.out

▶ That’s pretty small!

Dynamic Linking

hello world system

puts

Static Linking

▶ Compile with --static
▶ Results in very large file
▶ Includes the entire library!

Benefits of Dynamic Linking

▶ Makes code smaller
▶ needs less disk space
▶ needs less RAM

▶ Library is not part of the compiled program
⇒ when it gets updated, no need to recompile

Example: Code in 2 Files

main.c sum.c

int sum(int *a, int n);

int array[2] = {1, 2};

int main() {
int val = sum(array, 2);
return val;

}

int sum(int *a, int n) {
int i, s = 0;
for(i = 0; i<n; i++) {

s += a[i];
}
return s;

}

Compile and Run

$ gcc -Og -o prog main.c sum.c
$./prog
$ echo $?
3

Static Linking

main.c sum.c

cpp

cc1

as

main.o

cpp

cc1

as

sum.o

ld

prog

Static Linking

▶ Symbol resolution
▶ object files define and reference symbols

(functions, global variables, static variables)
▶ need to connect symbol to exactly one definition

▶ Relocation
▶ assemblers generate object files that starts at address 0
▶ when combining multiple object files, code must be shifted
▶ all reference to memory addresses must be adjusted
▶ assembler stores meta information in object file
▶ linker is guided by relocation entries

Static Linking

▶ Symbol resolution
▶ object files define and reference symbols

(functions, global variables, static variables)
▶ need to connect symbol to exactly one definition

▶ Relocation
▶ assemblers generate object files that starts at address 0
▶ when combining multiple object files, code must be shifted
▶ all reference to memory addresses must be adjusted
▶ assembler stores meta information in object file
▶ linker is guided by relocation entries

Object Files

▶ Relocatable object file
▶ binary code
▶ meta information that allows symbol resolution and relocation

▶ Executable object file
▶ binary code
▶ can be copied into memory and executed

▶ Shared object file
▶ binary code
▶ can be loaded into memory
▶ can be linked dynamically

Relocatable Object Files

▶ Executable and Linkable Format (ELF)
▶ header
▶ sections with different type of data
▶ section header table

ELF header
.text

.rodata
.data
.bss

.symtab

.rel.text
.rel.data
.debug
.line

.strtab
Section header table

Sections

.text machine code of compiled program

.rodata read-only data (e.g., strings in printf statements)

.data initialized global and static C variables

.bss uninitialized global and static C variables

.symtab symbol table

.rel.text list of locations in .text section (machine code)
to be modified when object is relocated

.rel.data same for .data

.debug debugging symbol table
(only compiled with -g)

.line mapping between line number and machine code
(only compiled with -g)

.strtab string table for .symtab and .debug

Symbols

▶ Global symbols that can be used by other objects
▶ Global symbols of other objects (not defined here)
▶ Local symbols only used in object defined with "static" attribute
▶ Note: non-static local variable are not exposed

ELF Symbol Table Entry

Name Pointer to string of symbol name
Type Function or data type
Binding Indicates local or global
Section Index of which section it belongs to
Value Section offset
Size Size in bytes

Example

$ readelf -a main.o
Section Headers:

[1] .text
[3] .data

Num: Value Size Type Bind Vis Ndx Name
8: 0000000000000000 24 FUNC GLOBAL DEFAULT 1 main
9: 0000000000000000 8 OBJECT GLOBAL DEFAULT 3 array

10: 0000000000000000 0 NOTYPE GLOBAL DEFAULT UND sum

▶ main is a function (FUNC) in section .text (1)
▶ array is an object (OBJECT) in section .data (3)
▶ sum is undefined (UND)

Symbol Resolution

▶ Linker must resolve all symbols to connect references to addresses
▶ Local symbols are contained to their object, each has a unique name
▶ Symbols in an object file may be undefined

(listed as UND in symbol table)
⇒ these must be defined in other objects

▶ If not found, linker complains:
$ gcc -Og main.c
/tmp/ccZzl3Pp.o: In function `main':
main.c:(.text+0xf): undefined reference to `sum'
collect2: error: ld returned 1 exit status

Static Libraries

▶ Goal: link various standard functions statically
→ binary without dependency

▶ Plan A
▶ put everything into big libc.o
▶ link it to the application object file
▶ ... but that adds too big of a file

▶ Plan B
▶ have separate object files printf.o, scanf.o, ...
▶ link only the ones that are needed
▶ ... but that requires a lot of tedious bookkeeping by programmer

Static Libraries

▶ Solution: archives
▶ Combine object files printf.o, scanf.o, ... into archive libc.a
▶ Let linker pick out the ones that are needed

$ gcc main.c /usr/lib/libc.a

▶ You can build your own libraries
$ ar rcs libmy.a my1.o my2.o my3.o

Static Libraries

▶ Solution: archives
▶ Combine object files printf.o, scanf.o, ... into archive libc.a
▶ Let linker pick out the ones that are needed

$ gcc main.c /usr/lib/libc.a
▶ You can build your own libraries

$ ar rcs libmy.a my1.o my2.o my3.o

Relocation

▶ Multiple object files
▶ Merge all sections, e.g., all .data sections together
▶ Assign run time memory addresses for each symbol
▶ Modify each symbol reference
▶ This is aided by relocation entries

Relocation Entry

Offset Offset of reference within object
Type Relocation type
Symbol Symbol table index
Added Constant part of relocation expression

Type may be
▶ absolute 32 bit address, or
▶ address relative to program counter

Zoom poll!

Consider the following code:
1: extern int a; // defined elsewhere
2:
3: void f(int b) {
4: a++;
5: b++;
6: printf("%d %d", a, b);
7: }

For which source lines are
relocation entries needed to resolve
the addresses of code or data?

A. 4 only
B. 5 only
C. 6 only
D. 4 and 6
E. 4, 5, and 6

Relocating Symbol Addresses

▶ main.o
0: 48 83 ec 08 sub $0x8,%rsp
4: be 02 00 00 00 mov $0x2,%esi
9: bf 00 00 00 00 mov $0x0,%edi
e: e8 00 00 00 00 callq 13 <main+0x13>

13: 48 83 c4 08 add $0x8,%rsp
17: c3 retq

▶ Relocation entries
▶ a: R_X86_64_32 array
▶ f: R_X86_64_PC32 sum-0x4

▶ At line 9: reference to array
▶ At line e: reference to sum function (undefined in object)

sum.o

0000000000000000 <sum>:
0: b8 00 00 00 00 mov $0x0,%eax
5: ba 00 00 00 00 mov $0x0,%edx
a: eb 09 jmp 15 <sum+0x15>
c: 48 63 ca movslq %edx,%rcx
f: 03 04 8f add (%rdi,%rcx,4),%eax

12: 83 c2 01 add $0x1,%edx
15: 39 f2 cmp %esi,%edx
17: 7c f3 jl c <sum+0xc>
19: f3 c3 repz retq

main.o + sum.o → prog
00000000004004f6 <main>:

4004f6: 48 83 ec 08 sub $0x8,%rsp
4004fa: be 02 00 00 00 mov $0x2,%esi
4004ff: bf 30 10 60 00 mov $0x601030,%edi
400504: e8 05 00 00 00 callq 40050e <sum>
400509: 48 83 c4 08 add $0x8,%rsp
40050d: c3 retq

000000000040050e <sum>:
40050e: b8 00 00 00 00 mov $0x0,%eax
400513: ba 00 00 00 00 mov $0x0,%edx
400518: eb 09 jmp 400523 <sum+0x15>
40051a: 48 63 ca movslq %edx,%rcx
40051d: 03 04 8f add (%rdi,%rcx,4),%eax
400520: 83 c2 01 add $0x1,%edx
400523: 39 f2 cmp %esi,%edx
400525: 7c f3 jl 40051a <sum+0xc>
400527: f3 c3 repz retq
400529: 0f 1f 80 00 00 00 00 nopl 0x0(%rax)

Loading Executable Object Files

Kernel memory

User stack

Run time heap (created by
malloc)

Read/write segment
(.data / .bss)

Read-only code segment
(.init, .text., .rodata)

Stack pointer

Loaded from
executable

0

400000

ffffffff

