
Lecture 33: I/O multiplexing

David Hovemeyer

April 24, 2024

601.229 Computer Systems Fundamentals

Example code

Example code for today is on course website in iomux.zip

Blocking operations

Why we need concurrency for server programs

Server main loop:
int server_fd = open_listenfd(port);

while (1) {
int client_fd =

Accept(server_fd, NULL, NULL);
chat_with_client(client_fd);
close(client_fd);

}

Why we need concurrency for server programs

Server main loop:
int server_fd = open_listenfd(port);

while (1) {
int client_fd =

Accept(server_fd, NULL, NULL); // Indefinite wait
chat_with_client(client_fd);
close(client_fd);

}

Why we need concurrency for server programs

Server main loop:
int server_fd = open_listenfd(port);

while (1) {
int client_fd =

Accept(server_fd, NULL, NULL);
chat_with_client(client_fd); // Indefinite wait
close(client_fd);

}

Why we need concurrency for server programs

Server main loop:
int server_fd = open_listenfd(port);

while (1) {
int client_fd =

Accept(server_fd, NULL, NULL);
chat_with_client(client_fd);
close(client_fd);

}

The server is not responsive while

1. Waiting for client connection to arrive
2. Waiting to receive data from client
3. Waiting to send data to client (sometimes required by TCP protocol)

Why we need concurrency for server programs

Server main loop:
int server_fd = open_listenfd(port);

while (1) {
int client_fd =

Accept(server_fd, NULL, NULL);
chat_with_client(client_fd);
close(client_fd);

}

The server is not responsive while
1. Waiting for client connection to arrive

2. Waiting to receive data from client
3. Waiting to send data to client (sometimes required by TCP protocol)

Why we need concurrency for server programs

Server main loop:
int server_fd = open_listenfd(port);

while (1) {
int client_fd =

Accept(server_fd, NULL, NULL);
chat_with_client(client_fd);
close(client_fd);

}

The server is not responsive while
1. Waiting for client connection to arrive
2. Waiting to receive data from client

3. Waiting to send data to client (sometimes required by TCP protocol)

Why we need concurrency for server programs

Server main loop:
int server_fd = open_listenfd(port);

while (1) {
int client_fd =

Accept(server_fd, NULL, NULL);
chat_with_client(client_fd);
close(client_fd);

}

The server is not responsive while
1. Waiting for client connection to arrive
2. Waiting to receive data from client
3. Waiting to send data to client (sometimes required by TCP protocol)

Blocking operations

▶ Operations such as accept, read, and write can block

▶ “Blocking” means that the OS kernel suspends the calling thread until the
operation has completed

▶ E.g., when calling accept, the calling thread is blocked until a request for
a new client connection

▶ Problem: while a thread is blocked, it can’t do anything else
▶ So, there is no way to support multiple simultaneous clients, and have the

server be responsive, using a single thread
▶ Or is there?

Blocking operations

▶ Operations such as accept, read, and write can block
▶ “Blocking” means that the OS kernel suspends the calling thread until the

operation has completed

▶ E.g., when calling accept, the calling thread is blocked until a request for
a new client connection

▶ Problem: while a thread is blocked, it can’t do anything else
▶ So, there is no way to support multiple simultaneous clients, and have the

server be responsive, using a single thread
▶ Or is there?

Blocking operations

▶ Operations such as accept, read, and write can block
▶ “Blocking” means that the OS kernel suspends the calling thread until the

operation has completed
▶ E.g., when calling accept, the calling thread is blocked until a request for

a new client connection

▶ Problem: while a thread is blocked, it can’t do anything else
▶ So, there is no way to support multiple simultaneous clients, and have the

server be responsive, using a single thread
▶ Or is there?

Blocking operations

▶ Operations such as accept, read, and write can block
▶ “Blocking” means that the OS kernel suspends the calling thread until the

operation has completed
▶ E.g., when calling accept, the calling thread is blocked until a request for

a new client connection
▶ Problem: while a thread is blocked, it can’t do anything else

▶ So, there is no way to support multiple simultaneous clients, and have the
server be responsive, using a single thread
▶ Or is there?

Blocking operations

▶ Operations such as accept, read, and write can block
▶ “Blocking” means that the OS kernel suspends the calling thread until the

operation has completed
▶ E.g., when calling accept, the calling thread is blocked until a request for

a new client connection
▶ Problem: while a thread is blocked, it can’t do anything else
▶ So, there is no way to support multiple simultaneous clients, and have the

server be responsive, using a single thread

▶ Or is there?

Blocking operations

▶ Operations such as accept, read, and write can block
▶ “Blocking” means that the OS kernel suspends the calling thread until the

operation has completed
▶ E.g., when calling accept, the calling thread is blocked until a request for

a new client connection
▶ Problem: while a thread is blocked, it can’t do anything else
▶ So, there is no way to support multiple simultaneous clients, and have the

server be responsive, using a single thread
▶ Or is there?

Nonblocking I/O

▶ Modern operating systems support nonblocking I/O
▶ In Unix/Linux, a file descriptor can be made nonblocking
▶ All operations that would normally block are guaranteed not to block if

the filed descriptor is nonblocking
▶ If a blocking operation (accept, read, write) is invoked, but it can’t be

completed immediately:
▶ Operation returns an error
▶ errno is set to EWOULDBLOCK error code

Clicker quiz!

Clicker quiz omitted from public slides

Aside: errno, error codes

▶ When a C library or system call function fails, errno is set to an integer
error code to indicate the reason for the failure

▶ Available using #include <errno.h>
▶ It’s not actually a global variable (because that wouldn’t work in a

multithreaded program)
▶ Actual definition in the Linux C library (glibc):

extern int *__errno_location (void) __THROW __attribute_const__;
define errno (*__errno_location ())

▶ __errno_location function returns a pointer to an integer variable
allocated in thread-local storage
▶ So, each thread has its own errno

An idea

Could we handle multiple client connections simultaneously as long as the
server avoids doing any blocking I/O?

Challenge: how do we know which file descriptors are ready to perform I/O?

An idea

Could we handle multiple client connections simultaneously as long as the
server avoids doing any blocking I/O?

Challenge: how do we know which file descriptors are ready to perform I/O?

I/O multiplexing

I/O multiplexing

Alternative approach for supporting multiple simultaneous client connections

Basic idea: server maintains sets of active file descriptors (mostly client
connections, but also for file I/O)

Main server loop uses select or poll system call to check which file
descriptors are ready, meaning that a read or write can be performed without
blocking

Compared to using processes or threads for concurrency:
▶ Advantage: less overhead (CPU, memory) per client connection than

processes or threads
▶ Disadvantage: higher code complexity

I/O multiplexing

Alternative approach for supporting multiple simultaneous client connections

Basic idea: server maintains sets of active file descriptors (mostly client
connections, but also for file I/O)

Main server loop uses select or poll system call to check which file
descriptors are ready, meaning that a read or write can be performed without
blocking

Compared to using processes or threads for concurrency:
▶ Advantage: less overhead (CPU, memory) per client connection than

processes or threads
▶ Disadvantage: higher code complexity

I/O multiplexing

Alternative approach for supporting multiple simultaneous client connections

Basic idea: server maintains sets of active file descriptors (mostly client
connections, but also for file I/O)

Main server loop uses select or poll system call to check which file
descriptors are ready, meaning that a read or write can be performed without
blocking

Compared to using processes or threads for concurrency:
▶ Advantage: less overhead (CPU, memory) per client connection than

processes or threads
▶ Disadvantage: higher code complexity

select system call

The select system call:

#include <sys/select.h>

int select(int nfds, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval *timeout);

readfds, writefds, and exceptfds are sets of file descriptors

select waits until at least one file descriptor has become ready for reading or
writing, or has an exceptional condition
▶ readfds, writefds, and/or exceptfds are modified to indicate the

specific file descriptors that are ready
▶ timeout specifies maximum amount of time to wait, NULL means

indefinitely

fd_set

An fd_set represents a set of file descriptors

Operations (where set is an fd_set variable):
▶ FD_ZERO(&set): make set empty
▶ FD_SET(fd, &set): add fd to set
▶ FD_CLR(fd, &set): remove fd from set
▶ FD_ISSET(fd, &set): true if fd is in set, false otherwise

I/O multiplexing main loop

Pseudo-code:
create server socket, add to active fd set

while (1) {
wait for fd to become ready (select or poll)

if server socket ready
accept a connection, add it to set

for fd in client connections
if fd is ready for reading, read and update connection state
if fs is ready for writing, write and update connection state

}

Updating connection state

The main difficulty of using I/O multiplexing is that communication with
clients is event-driven

When data is read from the client, event-processing code must figure out
what to do with it
▶ Data read might be a partial message

Similar issue when sending data to client: data might need to be sent in
chunks

Maintaining and updating state of client connections is more complicated
compared to code for process- or thread-based concurrency
▶ With these approaches, we can just use normal loops and control flow

Updating connection state

The main difficulty of using I/O multiplexing is that communication with
clients is event-driven

When data is read from the client, event-processing code must figure out
what to do with it
▶ Data read might be a partial message

Similar issue when sending data to client: data might need to be sent in
chunks

Maintaining and updating state of client connections is more complicated
compared to code for process- or thread-based concurrency
▶ With these approaches, we can just use normal loops and control flow

Updating connection state

The main difficulty of using I/O multiplexing is that communication with
clients is event-driven

When data is read from the client, event-processing code must figure out
what to do with it
▶ Data read might be a partial message

Similar issue when sending data to client: data might need to be sent in
chunks

Maintaining and updating state of client connections is more complicated
compared to code for process- or thread-based concurrency
▶ With these approaches, we can just use normal loops and control flow

Example: echo server

▶ Example: echoserv.c
▶ Protocol: read one line of text from client, send same line back, repeat

until quit is received

Connection data structure

Per-connection data structure:
#define CONN_READING 0
#define CONN_WRITING 1
#define CONN_DONE 2

struct Connection {
char in_buf[BUFFER_SIZE];
char out_buf[BUFFER_SIZE];
int in_count, out_pos, out_count;
int state;

};

in_buf, in_count: data received from client
out_buf, out_pos, out_count: data to be sent to client
state: client state (CONN_READING, CONN_WRITING, or CONN_DONE)

State machines

A synchronous network protocol
can be modeled as a state machine

In a protocol implementation using
threads or processes for
concurrency, state is implicit

When implementing a protocol
with I/O multiplexing, state must
be explicit

Making a file descriptor nonblocking

Even when using select or poll to determine when file descriptors are ready,
it is still a good idea to make them nonblocking

Avoids situations where an I/O operation might block

Making a file descriptor nonblocking:
void make_nonblocking(int fd) {

int flags = fcntl(fd, F_GETFL, 0);
if (flags < 0) {

fatal("fcntl failed: could not get flags");
}
flags |= O_NONBLOCK;
if (fcntl(fd, F_SETFL, flags) < 0) {

fatal("fcntl failed: could not set flags");
}

}

readfds and writefds

▶ Server has two fd_sets, readfds and writefds
▶ These specify the file descriptors that the server wants to check for being

ready to read (readfds) or write (writefds)
▶ The server socket and the client file descriptors of all connections in the

CONN_READING state are placed in readfds
▶ The client file descriptors of all connections in the CONN_WRITING state

are placed in writefds
▶ Each call to select determines which file descriptors in readfds are

ready for reading, and which file descriptors in writefds are ready for
writing
▶ If the server socket file descriptor is ready for reading, it means that a

connection request has arrived (and a call to accept will not block)

Building readfds and writefds

// Code executed for each iteration of server main loop

// Place client socket fds in readfds and writefds as appropriate
for (int fd = 0; fd <= maxfd; fd++) {

struct Connection *conn = client_conn[fd];
if (conn) {

if (conn->state == CONN_READING) {
FD_SET(fd, &readfds);

} else if (conn->state == CONN_WRITING) {
FD_SET(fd, &writefds);

}
}

}

// Server socket is always in readfds
FD_SET(serverfd, &readfds);

Determine which file descriptors are ready

int rc = select(maxfd + 1, &readfds, &writefds, NULL, NULL);
if (rc < 0) {

fatal("select failed");
}

The maxfd variable keeps track of the maximum file descriptor value: select
is more efficient when it checks fewer file descriptors for readiness

Accept a client connection

if (FD_ISSET(serverfd, &readfds)) {
int clientfd = Accept(serverfd, NULL, NULL);
make_nonblocking(clientfd);
if (clientfd > maxfd) {

maxfd = clientfd;
}
client_conn[clientfd] = create_client_conn();

}

Service client connections

for (int fd = 0; fd <= maxfd; fd++) {
if (client_conn[fd] != NULL) {

struct Connection *conn = client_conn[fd];
if (FD_ISSET(fd, &readfds)) {

client_do_read(fd, conn);
}
if (FD_ISSET(fd, &writefds)) {

client_do_write(fd, conn);
}
if (conn->state == CONN_DONE) {

close(fd);
free(conn);
client_conn[fd] = NULL;

}
}

}

client_do_read

void client_do_read(int fd, struct Connection *conn) {
int remaining = BUFFER_SIZE - conn->in_count - 1;

ssize_t rc = read(fd, conn->in_buf + conn->in_count, remaining);
if (rc < 0) {

fatal("read failed");
}
conn->in_count += rc;

// process the data that was read
...40+ lines of code omitted...

}

Code is fairly complicated because it must
▶ Determine if a complete message was received
▶ If so, copy it to out_buf, deal with leftover data, update connection state

client_do_read

void client_do_read(int fd, struct Connection *conn) {
int remaining = BUFFER_SIZE - conn->in_count - 1;

ssize_t rc = read(fd, conn->in_buf + conn->in_count, remaining);
if (rc < 0) {

fatal("read failed");
}
conn->in_count += rc;

// process the data that was read
...40+ lines of code omitted...

}

Code is fairly complicated because it must

▶ Determine if a complete message was received
▶ If so, copy it to out_buf, deal with leftover data, update connection state

client_do_read

void client_do_read(int fd, struct Connection *conn) {
int remaining = BUFFER_SIZE - conn->in_count - 1;

ssize_t rc = read(fd, conn->in_buf + conn->in_count, remaining);
if (rc < 0) {

fatal("read failed");
}
conn->in_count += rc;

// process the data that was read
...40+ lines of code omitted...

}

Code is fairly complicated because it must
▶ Determine if a complete message was received

▶ If so, copy it to out_buf, deal with leftover data, update connection state

client_do_read

void client_do_read(int fd, struct Connection *conn) {
int remaining = BUFFER_SIZE - conn->in_count - 1;

ssize_t rc = read(fd, conn->in_buf + conn->in_count, remaining);
if (rc < 0) {

fatal("read failed");
}
conn->in_count += rc;

// process the data that was read
...40+ lines of code omitted...

}

Code is fairly complicated because it must
▶ Determine if a complete message was received
▶ If so, copy it to out_buf, deal with leftover data, update connection state

client_do_write

void client_do_write(int fd, struct Connection *conn) {
int remaining = conn->out_count - conn->out_pos;
ssize_t rc = write(fd, conn->out_buf + conn->out_pos, (size_t) remaining);
if (rc < 0) {

fatal("write failed");
}

conn->out_pos += rc;
if (conn->out_pos == conn->out_count) {

conn->state = CONN_READING;
}

}

Fairly straightforward: just try to copy data from out_buf to the client socket

client_do_write

void client_do_write(int fd, struct Connection *conn) {
int remaining = conn->out_count - conn->out_pos;
ssize_t rc = write(fd, conn->out_buf + conn->out_pos, (size_t) remaining);
if (rc < 0) {

fatal("write failed");
}

conn->out_pos += rc;
if (conn->out_pos == conn->out_count) {

conn->state = CONN_READING;
}

}

Fairly straightforward: just try to copy data from out_buf to the client socket

That wasn’t so bad?

▶ The I/O multiplexing echo server implementation not terribly complex (a
little over 200 lines of code)

▶ However: the protocol was very simple
▶ and even so, client_do_read was quite complicated!

▶ Real protocols (e.g., HTTP) would be much more complicated to
implement

▶ It would be nice if there were a way to get the benefits of I/O
multiplexing, but write our code in a “threaded” style rather than an
“event-driven” style

That wasn’t so bad?

▶ The I/O multiplexing echo server implementation not terribly complex (a
little over 200 lines of code)

▶ However: the protocol was very simple

▶ and even so, client_do_read was quite complicated!
▶ Real protocols (e.g., HTTP) would be much more complicated to

implement
▶ It would be nice if there were a way to get the benefits of I/O

multiplexing, but write our code in a “threaded” style rather than an
“event-driven” style

That wasn’t so bad?

▶ The I/O multiplexing echo server implementation not terribly complex (a
little over 200 lines of code)

▶ However: the protocol was very simple
▶ and even so, client_do_read was quite complicated!

▶ Real protocols (e.g., HTTP) would be much more complicated to
implement

▶ It would be nice if there were a way to get the benefits of I/O
multiplexing, but write our code in a “threaded” style rather than an
“event-driven” style

That wasn’t so bad?

▶ The I/O multiplexing echo server implementation not terribly complex (a
little over 200 lines of code)

▶ However: the protocol was very simple
▶ and even so, client_do_read was quite complicated!

▶ Real protocols (e.g., HTTP) would be much more complicated to
implement

▶ It would be nice if there were a way to get the benefits of I/O
multiplexing, but write our code in a “threaded” style rather than an
“event-driven” style

That wasn’t so bad?

▶ The I/O multiplexing echo server implementation not terribly complex (a
little over 200 lines of code)

▶ However: the protocol was very simple
▶ and even so, client_do_read was quite complicated!

▶ Real protocols (e.g., HTTP) would be much more complicated to
implement

▶ It would be nice if there were a way to get the benefits of I/O
multiplexing, but write our code in a “threaded” style rather than an
“event-driven” style

I/O multiplexing with coroutines

Coroutines

One way to reduce the complexity of I/O multiplexing is to implement
communication with clients using coroutines

Coroutines are, essentially, a lightweight way of implementing threads
▶ But with runtime cost closer to function call overhead

Each client connection is implemented as a coroutine

When a client file descriptor finds that a client fd is ready for reading or
writing, it yields to the client coroutine

Client coroutine will do I/O, and then yield back to the main routine

Echo server implementation with coroutines

▶ echoserv_co.c is an echo server implementation using coroutines
▶ Similar number of lines of code as echoserv.c
▶ However, 30 lines of code are coroutine-aware versions of read and write
▶ They check for EWOULDBLOCK and yield back to the main routine if a

call to read or write would block
▶ Server main loop is very similar
▶ Actual protocol implementation is much simpler!

Echo server client coroutine
void chat_with_client(void) {

struct Connection *conn = (struct Connection *) aco_get_arg();
for (;;) {

// read a line
conn->state = CONN_READING;
co_readline(conn);

// if line was "quit", we're done
if (strcmp(conn->out_buf, "quit") == 0) {

break;
}

// echo line back to client
conn->state = CONN_WRITING;
co_write_fully(conn->fd, conn->out_buf, strlen(conn->out_buf));
co_write_fully(conn->fd, "\r\n", 2);

}
aco_exit();

}

Observations

▶ The chat_with_client function looks almost exactly like a thread start
function

▶ The assignments to conn->state help the main routine know when to
schedule the coroutine (based on the readiness of its file descriptor for
reading or writing)

▶ The co_readline and co_write_fully functions are “coroutine-aware”
I/O functions which yield back to the main routine if a call to read or
write would block

▶ See complete code for details

	Blocking operations
	I/O multiplexing
	I/O multiplexing with coroutines

