
Midterm Exam
601.229 Computer Systems Fundamentals

October 1, 2021

Complete all questions.

Use additional paper if needed.

Time: 50 minutes.

I affirm that I have completed this exam without unauthorized assistance
from any person, materials, or device.

Signed:

Print name:

Date:

Reference

Powers of 2 (y = 2x):

x 0 1 2 3 4 5 6 7 8 9 10 11 12
y 1 2 4 8 16 32 64 128 256 512 1,024 2,048 4,096

x 13 14 15 16
y 8,192 16,384 32,768 65,536

Note that in all questions concerning C:

• uint8_t is an 8-bit unsigned integer type
• uint16_t is a 16-bit unsigned integer type
• uint32_t is a 32-bit unsigned integer type
• int8_t is an 8-bit signed two’s complement integer type
• int16_t is a 16-bit signed two’s complement integer type
• int32_t is a 32-bit signed two’s complement integer type

x86-64 registers:

Callee-saved: %rbx, %rbp, %r12,
%r13, %r14, %r15

Caller-saved: %r10, %r11

Return value: %rax

Arguments: %rdi, %rsi, %rdx,
%rcx, %r8, %r9

Note that argument registers and
return value register are
effectively caller-saved.

Registers and sub-registers:
Register Low 32 bits Low 16 bits Low 8 bits
%rax %eax %ax %al
%rbx %ebx %bx %bl
%rcx %ecx %cx %cl
%rdx %edx %dx %dl
%rbp %ebp %bp %bpl
%rsi %esi %si %sil
%rdi %edi %di %dil
%r8 %r8d %r8w %r8b
%r9 %r9d %r9w %r9b
%r10 %r10d %r10w %r10b
%r11 %r11d %r11w %r11b
%r12 %r12d %r12w %r12b
%r13 %r13d %r13w %r13b
%r14 %r14d %r14w %r14b
%r15 %r15d %r15w %r15b

Stack alignment: %rsp must contain an address that is a multiple of 16 when any call
instruction is executed.

Operand size suffixes: b = 1 byte, w = 2 bytes, l = 4 bytes, q = 8 bytes (Examples: movb,
movw, movl, movq)

Question 1. [10 points] Show the binary (base 2) representation of the following integer
values:

• 15
• 225

Question 2. [10 points] What output is printed by the following C code? Explain briefly.

uint8_t a = 197;
uint8_t b = 65;
uint8_t sum = a + b;
printf("%u\n", (unsigned) sum);

Question 3. [10 points] Show the 8-bit two’s complement representation of the following
integer values:

• 51
• -107

Question 4. [10 points] What output is printed by the following code? (Hint: | means
bitwise or.) Explain briefly.

int16_t x = 32767;
printf("%d\n", x);
x = x | 0x8000;
printf("%d\n", x);

Question 5. [10 points] A 32-bit IEEE 754 single precision floating point value has the
following representation:

Sign Exponent Fraction
1 bit 8 bits 23 bits

Recall that normalized floating point numbers have values ±1.x×2y, where x is specified
by the fraction bits, and y is value of the exponent (which has a value between −126 and
127.)

This format allows all integer values in the range −q to q (inclusive) to be represented
exactly.

State the value of q = 1.x× 2y. First, specify the fraction (x) in base 2 (i.e., a sequence of 23
0s and 1s):

x =

Next, specify the exponent (y) in base 10:

y =

Optional: explain briefly.

Question 6. [10 points] What output is printed by the following C program? Assume that
sizeof(int) == 4. Explain briefly.

int a[4] = { 6, 7, 8, 9 };
printf("%d\n", (int) (&a[2] - &a[0]));
printf("%d\n", (int) ((char *)&a[2] - (char *)&a[0]));

Question 7. [40 points] Consider the following C function prototype:

void add_to_vec_if_even(int32_t *vec, unsigned len, int32_t value);

This function takes an array of len int32_t values and adds value to each of the even
values in the array. Its behavior is described by the following unit test:

int32_t data[] = { 247, -550, 582, 181 };
add_to_vec_if_even(data, 4, 10);
ASSERT(247 == data[0]); // original value was odd
ASSERT(-540 == data[1]); // original value was even
ASSERT(592 == data[2]); // original value was even
ASSERT(181 == data[3]); // original value was odd

Show an x86-64 assembly language implementation of the add_to_vec_if_even func-
tion. (Continue on next page if necessary.) Hint: andl $1, Reg is a useful way to check
whether the 32-bit value in Reg is odd.

.globl add_to_vec_if_even:
add_to_vec_if_even:

[Continue your answer to Question 7 here if necessary.]

