
Midterm Exam 2
601.229 Computer Systems Fundamentals

November 5, 2021

Complete all questions.

Time: 50 minutes.

I affirm that I have completed this exam without unauthorized assistance
from any person, materials, or device.

Signed:

Print name:

Date:






























Reference

Powers of 2 (y = 2x):

x 0 1 2 3 4 5 6 7 8 9 10 11 12
y 1 2 4 8 16 32 64 128 256 512 1,024 2,048 4,096

x 13 14 15 16
y 8,192 16,384 32,768 65,536

Note that in all questions concerning C:

• uint8_t is an 8-bit unsigned integer type
• uint16_t is a 16-bit unsigned integer type
• uint32_t is a 32-bit unsigned integer type
• int8_t is an 8-bit signed two’s complement integer type
• int16_t is a 16-bit signed two’s complement integer type
• int32_t is a 32-bit signed two’s complement integer type

x86-64 registers:

Callee-saved: %rbx, %rbp, %r12,
%r13, %r14, %r15

Caller-saved: %r10, %r11

Return value: %rax

Arguments: %rdi, %rsi, %rdx,
%rcx, %r8, %r9

Note that argument registers and
return value register are
effectively caller-saved.

Registers and sub-registers:
Register Low 32 bits Low 16 bits Low 8 bits
%rax %eax %ax %al
%rbx %ebx %bx %bl
%rcx %ecx %cx %cl
%rdx %edx %dx %dl
%rbp %ebp %bp %bpl
%rsi %esi %si %sil
%rdi %edi %di %dil
%r8 %r8d %r8w %r8b
%r9 %r9d %r9w %r9b
%r10 %r10d %r10w %r10b
%r11 %r11d %r11w %r11b
%r12 %r12d %r12w %r12b
%r13 %r13d %r13w %r13b
%r14 %r14d %r14w %r14b
%r15 %r15d %r15w %r15b

Stack alignment: %rsp must contain an address that is a multiple of 16 when any call
instruction is executed.

Operand size suffixes: b = 1 byte, w = 2 bytes, l = 4 bytes, q = 8 bytes (Examples: movb,
movw, movl, movq)



Question 1. [10 points] Consider the following C++ function, which rearranges the ele-
ments of a vector of int elements so that they are in the opposite of their original order:

void reverse_int_vec(std::vector<int> &v) {
size_t size = v.size();
for (size_t i = 0; i < size; i++) {
// remove the last element
int last = v.back();
v.pop_back();

// insert the element at position i
v.insert(v.begin() + i, last);

}
}

The following unit tests explain the expected behavior:

std::vector<int> testvec = { 1, 2, 3 };
reverse_int_vec(testvec);
assert(3 == testvec[0]);
assert(2 == testvec[1]);
assert(1 == testvec[2]);

(a) Briefly explain why the reverse_int_vec function will execute slowly when called
on a vector with a large number of elements.

(b) Briefly suggest a way of implementing reverse_int_vec that would perform better
on large vectors.


























































































































































































































































































































































































































































































































































































































































































































































































































































































































































































Question 2. [15 points] Consider the following code:

1: a = b * c;
2: d = e * f;
3: g = d - a;

Assume that all variables (a – g) are CPU registers, and that each statement can be trans-
lated to a single machine instruction.

(a) Which, if any, of these statements can be executed in parallel? Explain briefly.

(b) Are there any ordering constraints which would require one statement to be executed
after another statement? If so, what are they? Explain briefly.

Question 3. [15 points] A memory cache for a system with a 32-bit address space has 2048
sets, 4 blocks per set, and the block size is 128 bytes.

Sketch the format of a memory address, showing which bits of the address are the off-
set, index, and tag. (Reminder: the offset indicates the position of a specific byte in the
accessed block, and the index indicates which set of the cache is being accessed.)

Note that bit 0 is the least significant (rightmost) bit and bit 31 is the most significant
(leftmost) bit.





































































































































































































































































































































































































































































































































































































































































































































































































































































































































































Question 4. [30 points] In a cache, addresses are 8 bits, blocks are 16 bytes, there are 4
sets, and the cache is 2-way set associative.

Complete the following table. For each address in the Request column, indicate the tags of
cached blocks after handling the request. Addresses are specified in base-2. Assume each
request is a load, and that they execute sequentially (top row is the first in the sequence.)
All slots are initially empty. When a block is evicted, select the victim using the LRU
(Least Recently Used) replacement policy.

Set 0 Set 1 Set 2 Set 3
Request Slot 0 Slot 1 Slot 0 Slot 1 Slot 0 Slot 1 Slot 0 Slot 1

empty empty empty empty empty empty empty empty
10110001
00111110
10111000
00011011
10111101
11001110
11111001
00001100
10011000
11001011
00111111
01001010
11011100





































































































































































































































































































































































































































































































































































Question 5. [15 points] Consider the following C program:

1: #include <stdio.h>
2:
3: int main(void) {
4: // read a sequence of integer values
5: // until a negative value is read,
6: // then print the sum
7: int sum = 0, done = 0;
8: while (!done) {
9: int value;
10: scanf("%d", &value);
11: if (value < 0) { done = 1; }
12: else { sum += value; }
13: }
14: printf("Sum is %d\n", sum);
15: return 0;
16: }

(a) At which point in this program’s execution is it most likely that the OS kernel will
suspend the execution of the program and allow another program to execute? Explain
briefly.

(b) For the point you mentioned in (a), briefly explain the most likely reason why the OS
kernel would choose to resume execution of the program.






































































































































































































































































































































































































































































































































































































































































































































































































































































































Question 6. [15 points] Consider the following C program:

1: #include <stdio.h>
2:
3: const int arr[] = {
4: 456, 832, 815, 920, 448, 120, 475, 346, 352, 568,
5: 486, 70, 594, 9, 111, 908, 871, 188, 159, 527
6: };
7:
8: int main(void) {
9: const int *p = arr, *end = arr + 20;
10:
11: int sum = 0;
12: while (p < end) {
13: sum += *p;
14: p++;
15: }
16: printf("sum=%d\n", sum);
17: return 0;
18: }

When the program executes, assume that a page fault occurs in the pointer dereference
(*p) at line 13.

Briefly explain how the OS kernel will handle the page fault. Be sure to include

• How the OS kernel will find a physical page to allocate, and
• How the OS kernel will initialize the data of the physical page it maps into the

process address space

If data is read from and/or written to a storage device (hard disk or SSD), explain.

























































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































[Extra page for answers and/or scratch work.]



[Extra page for answers and/or scratch work.]



[Extra page for answers and/or scratch work.]


