
Final Exam

601.229 Computer Systems Fundamentals

Spring 2020
Johns Hopkins University

Instructors: Xin Jin and David Hovemeyer

14 May 2020

Complete all questions.

Use additional paper if needed.

Take-home exam

1

Q1. Caches 20 points

(a) [4 points] An architecture has 32 bit addresses. Assume the following cache parame-
ters:

• 262,144 (218) total bytes of data
• Each block contains 256 (28) bytes
• 4-way set associativity

Draw a diagram showing the structure of an address, indicating the exact ranges (bit
positions) of the offset bits, the index bits, and the tag bits.

(b) [4 points] How many address bits are used to represent the index when a cache is fully
associative? Explain briefly.

2

(c) [12 points] Complete the following table. For each address in the Request column,
indicate the tags of cached blocks after handling the request. Addresses are 8 bits, blocks
are 8 bytes, there are 4 sets, and the cache is 2-way set associative. All slots are initially
empty. Use FIFO (First-In, First-Out) when replacing blocks.

Set 0 Set 1 Set 2 Set 3
Request Slot 0 Slot 1 Slot 0 Slot 1 Slot 0 Slot 1 Slot 0 Slot 1

empty empty empty empty empty empty empty empty
01101111
10010111
10100111
00010111
10101100
11001010
00101100
10100101
10000101
01011011

3

Q2. Processes and linking 20 points

(a) [10 points] Consider the following program:

#include <stdio.h>
#include <assert.h>

void *addr1, *addr2;

void f(void) {
int b;
addr2 = &b;

}

int main(void) {
int a;
addr1 = &a;
f();
assert(addr1 != addr2);
if (addr1 < addr2) {

printf("addr1 < addr2\n");
} else {

printf("addr2 > addr1\n");
}
return 0;

}

Assuming that this program is compiled for x86-64, what output will the program pro-
duce? Explain.

4

(b) [10 points] When generating a non-position-independent executable, the linker as-
signs an absolute address to each definition (function or global variable) in the executable.
In general, many processes can be executed using the same executable. For example, let’s
say that

• /usr/bin/vi is the executable for the vi editor
• The executable is not position-independent
• Many users are running the executable at the same time

Explain how is it possible that many instances of the executable can be running simulta-
neously, even though they are all using the same addresses.

5

Q3. Processes and virtual memory 20 points

(a) [5 points] Name two sections of a Linux executable such that it would be safe for the
operating system kernel to map the memory pages containing data loaded from those
sections into the address spaces of multiple processes. Explain why it is safe to share the
memory for those sections. If any hardware mechanisms are necessary to ensure that the
sharing can be done safely, indicate what they are.

(b) [5 points] Name a section of a Linux executable where it would not be safe for the op-
erating system kernel to map the memory pages containing data loaded from that section
into the address spaces of multiple processes. Explain why sharing pages for this section
would not be safe.

6

(c) [5 points] The x86-64 architecture has (effectively) 48 bit virtual addresses. How much
memory would be required to represent the mappings of virtual to physical pages for the
entire 48-bit virtual address space if the page tables were a single “flat” array? Assume
that each page table entry requires 8 bytes.

(d) [5 points] On systems with virtual memory, it is possible for the contents of a data
cache to be indexed by either virtual or physical addresses. State one advantage and
one disadvantage for both indexing a cache by virtual address and indexing a cache by
physical address.

7

Q4. Threads 20 points

(a) [5 points] Briefly explain why each thread in a multithreaded program needs its own
call stack.

(b) [5 points] Is it possible that it would be useful for a program to create multiple threads
even if it is running on a single-core CPU? Explain briefly.

8

(c) [10 points] Consider the following Queue data type and queue_try_enqueue func-
tion:

struct Queue {
void *items[MAX];
int head, tail, count;
pthread_mutex_t lock;

};

// Try to add item to queue, returns true if successful
// and false if the queue is currently full.
bool queue_try_enqueue(struct Queue *q, void *item) {

pthread_mutex_lock(&q->lock);

if (q->count == MAX) { return false; }

q->items[q->tail] = item;
q->tail = (q->tail + 1) % MAX;

pthread_mutex_unlock(&q->lock);

return true;
}

Briefly explain the problem with the queue_try_enqueue function, and how to fix it.

9

Q5. Networks 20 points

(a) [5 points] Briefly explain why server programs generally need to use some form of
concurrency, such as processes or threads.

[continued on next page]

10

(b) [15 points] Complete the following function. It should read one line of text from the
file descriptor given as the parameter, and then send back (using the same file descriptor)
a line of text of the form

Hello, text

where text is the contents of the line of text read from the file descriptor. Make sure that
the function will work correctly if the file descriptor refers to a network socket.

The function should return 1 if successful, and 0 if an error occurs.

int hello_transaction(int fd) {

11

