Lecture 2: Data representation, addresses

Phillipp Koehn, David Hovemeyer

January 23, 2026

601.229 Computer Systems Fundamentals

=N

S il:,’

Welcome!

» Today:
» Data representation
» Addresses
» Bitwise operations

Data representation

There are only “.: kinds of people.

Those who understand binary
and those who don't.

Data representation

Let’s consider ways of representing numbers...

Roman Numerals

» Basic units
V X L C D M
5 10 50 100 500 1000

Roman Numerals

» Basic units
V X L C D M
5 10 50 100 500 1000

» Additive combination of units
1 v XVE XXX MDCLXVI MMXVI

Roman Numerals

» Basic units
V X L C D M
5 10 50 100 500 1000

» Additive combination of units
1 v XVE XXX MDCLXVI MMXVI

2 3 6 16 33 1666 2016

Roman Numerals

» Basic units
V X L C D M
5 10 50 100 500 1000

» Additive combination of units
1 v XVE XXX MDCLXVI MMXVI

2 3 6 16 33 1666 2016

» Subtractive combination of units
IV IX XL XC CD CM MCMLXXI

Roman Numerals

» Basic units
V X L C D M
5 10 50 100 500 1000

» Additive combination of units
1 v XVE XXX MDCLXVI MMXVI

2 3 6 16 33 1666 2016

» Subtractive combination of units
IV IX XL XC CD CM MCMLXXI

4 9 40 90 400 900 1971

Arabic Numerals

» Developed in India and Arabic world during the European Dark Age
» Decisive step: invention of zero by Brahmagupta in AD 628
» Basic units
01 23 456 7 8 9
» Positional system
1 10 100 1000 10000 100000 1000000

Why Base 107

dig-it
[dijit/
noun

1. any of the numerals from 0 to 9, especially when forming part of a number.
synonyms: numeral, number, figure, integer
"the door code has ten digits"

2. afinger (including the thumb) or toe.
synonyms: finger, thumb, toe; extremity
"we wanted to warm our frozen digits"

Y\
v U

Computer hardware is based on digital logic
» where digital voltages (high and low) represent 1 and 0

» Decoding binary numbers

Binary number 1 1 01 0 1 0 1

» Decoding binary numbers

Binary number 1 1 01 0 1 0 1
Position 7 6 5 4 3 2 1 0

» Decoding binary numbers

Binary number 1 1 01 0 1 0 1
Position 7 6 5 4 3 2 1 0
Value 27 260 2¢ 0 22 0 2°

» Decoding binary numbers

Binary number 1 1 01 0 1 0 1
Position 7 6 5 4 3 2 1 0
Value 27 260 2¢ 0 22 0 2°
128 64 0 16 0 4 0 1 =213

Clicker quiz 1

Clicker quiz omitted from public slides

» Numbers like 11010101 are very hard to read

= Octal numbers
Binary number 1 1 0 1 0 1 0 1

Octal number 3 2 5

» Numbers like 11010101 are very hard to read

= Octal numbers
Binary number 1 1 0 1 0 1 0 1

Octal number 3 2 5
Position 2 1 0

» Numbers like 11010101 are very hard to read

= Octal numbers
Binary number 1 1 0 1 0 1 0 1

Octal number 3 2 5

Position 2 1 0
Value 3x8 2x8t 5 x 8°

» Numbers like 11010101 are very hard to read

= Octal numbers
Binary number 1 1 0 1 0 1 0 1

Octal number 3 2 5
Position 2 1 0
Value 3x8 2x8 5x8°
192 16 5 =213

» ... but grouping three binary digits is a bit odd

» Grouping 4 binary digits — base 2% = 16
» "Hexadecimal" (hex = Greek for six, decimus = Latin for tenth)

» Grouping 4 binary digits — base 2% = 16
» "Hexadecimal" (hex = Greek for six, decimus = Latin for tenth)
» Need characters for 10-15:

» Grouping 4 binary digits — base 2% = 16
» "Hexadecimal" (hex = Greek for six, decimus = Latin for tenth)

» Need characters for 10-15: use letters a-f
Binary number 11010101

Hexadecimal number d 5

» Grouping 4 binary digits — base 2% = 16
» "Hexadecimal" (hex = Greek for six, decimus = Latin for tenth)

» Need characters for 10-15: use letters a-f
Binary number 11010101

Hexadecimal number d 5
Position 1 0

» Grouping 4 binary digits — base 2% = 16
» "Hexadecimal" (hex = Greek for six, decimus = Latin for tenth)

» Need characters for 10-15: use letters a-f

Binary number 11010101
Hexadecimal number d 5
Position 1 0
Value 13 x 161 5 x 16°

208 5 = 213

Clicker quiz 2

Clicker quiz omitted from public slides

Decimal | Binary | Octal | Hexademical
0
1
2
3
8
15
16
20
23
24
30
50

100
255
256

Decimal | Binary | Octal | Hexademical
0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
8 1000 10 8
15 1111 17 f
16 10000 20 10

20 10100 24 14
23 10111 27 17
24 11000 30 18
30 11110 36 le
50 110010 62 32
100 1100100 144 64
255 11111111 377 ff
256 100000000 | 400 100

Bytes and Words

» On all modern computers data is accessed in chunks of 8 bits: 1 byte
» Larger chunks of data (“words") are formed from multiple bytes:
» 2 bytes = 16 bits
» 4 bytes = 32 bits
» 8 bytes = 64 bits
» Modern CPUs have instructions for doing operations on word-sized data
values

C data types

» The “primitive” C data types typically map onto machine word sizes
» ... but unfortunately, not in a way that's completely consistent across
different machines and compilers
» “Typical” representations of C data types:

Bytes used on. ..

Data type | 32-bit systems 64-bit systems
char 1 1
short 2 2
int 4 4
long 4 8

(Note inconsistency in last row)

Portable integer types

» The stdint.h header file provides portable integer types providing an
exact number of bits: int32 t, uint32 t, int64_t, uint64_t, etc.

» Note that constant values are still a problem!

» For example, 0x100000000UL (232) is likely to be a valid on a 64-bit
system but not on a 32-bit system

» The “UL" suffix means “unsigned long”

Addresses

Memory and addresses

» Conceptually, memory (RAM) is a sequence of byte-sized storage locations
» Each byte storage location has an integer address

» 0 is the lowest address

» Highest address determined by number of address bits processor uses:

» 32-bit processors = addresses have 32 bits
» 64-bit processors = addresses have 64 bits

32 bit vs. 64 bit addresses

> 1GB =23 1TB =24

» A 32-bit system can directly address 232 bytes (4 GB)
» Not that much memory by today's standards!

» A 64-bit system can (in theory) directly access 2% = 17,179,869,184 GB
= 16,777,216 TB

» This is a huge address space
» Note that actual systems don’t support that much physical memory
» However, tens or hundreds of GB of physical memory is not uncommon

» To store the value of an n-bit word in memory, n/8 contiguous bytes are
used

» The address of the first byte is the address of the overall word

» Typically, an n-byte word must have an address that is an exact multiple
of n (“natural” alignment)
» For example, the first byte allocated for an 8-byte word must have an

address that is an exact multiple of 8

» Attempt to load or store an n-byte word at an address that is not a

multiple of n is an unaligned access

» Best case: access works, reduced performance
» Worst case: runtime exception that kills the program

Visualizing alignment

10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015

Visualizing alignment

10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015

char variables (1 byte) can be
placed at any address

char a;
char b;
char c;

J

Visualizing alignment

10000 short variables (2 bytes)
10001 must be aligned on an
10002 address that is a multiple
of 2

10003
10004 short aj;
10005 \: short b;
10006 short c;
10007
10008
10009
10010
10011
10012
10013
10014
10015

Visualizing alignment

10000 int variables (4 bytes)
10001 must be aligned on an
10002 a?diess that is a multiple
o

10003
10004 <\:I int a;
10005 int b;
10006 int c;
10007
10008
10009
10010
10011
10012
10013
10014
10015

Visualizing alignment

10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015

N\

When variables with different
alignment regquirements are
defined, the compiler may
insert padding to ensure
correct alignment

char aj;
int b;
short c;
int d;

» Pointers in C are just memory addresses!

» The address-of operator (&), when applied to a variable, yields a pointer
to the variable (i.e., the address of the first memory byte that is part of
the variable's storage)

» The dereference operator (*), when applied to a pointer value (address),
refers to the variable whose storage location is indicated by the address

Example C program

#include <stdio.h>
#include <stdlib.h>

long g;

int main(void) {

long* p = malloc(sizeof(long));

long x;

int a, b;

short ¢, d, e, f;

scanf ("%1d %1d %1d %d %d %hd %hd %hd %hd",
p, &g, &x, &a, &b, &c, &4, &e, &f);

long sum = *p + g+ x+a+b+c+d+e+ £

printf ("%1ld\n", sum);

printf ("%p\n¥%p\nip\n%p\nip\nip\n%p\nip\n%ip\n",
p, &g, &x, &a, &b, &c, &4, &e, &f);

return O;

Running example C program

$ gcc address.c
$./a.out
123456789
45
0x56142dfba260
0x56142c265018
0x7ffc7e6b2£fd0
0x7ffc7e6b2fc8
0x7ffc7e6b2fcc
0x7ffc7e6b2fcO
0x7ffc7e6b2fc2
0x7ffc7e6b2fc4d
0x7ffc7e6b2fc6

Running example C program

$ gcc address.c

$./a.out
123456789
45

0x56142dfba260 <-- address of malloc'ed buffer
0x56142c265018
0x7ffc7e6b2£d0
0x7ffc7e6b2fc8
0x7ffc7e6b2fcc
0x7ffc7e6b2fcO
0x7ffc7e6b2fc2
0x7ffc7e6b2fc4d
0x7ffc7e6b2fc6

Running example C program

$ gcc address.c

$./a.out
123456789
45

0x56142dfba260
0x56142c265018 <-- address of global variable
0x7ffc7e6b2fd0
0x7ffc7e6b2fc8
Ox7ffc7e6b2fcc
0x7ffc7e6b2fcO
0x7ffc7e6b2fc2
0x7ffc7e6b2fc4d
0x7ffc7e6b2fc6

Running example C program

$ gcc address.c

$./a.out
123456789
45

0x56142dfba260
0x56142c265018
0x7ffc7e6b2£d0 <-- address of long variable on stack
0x7ffc7e6b2fc8
Ox7ffc7e6b2fcc
0x7ffc7e6b2fcO
0x7ffc7e6b2fc2
0x7ffc7e6b2fc4d
0x7ffc7e6b2fc6

Running example C program

$ gcc address.c

$./a.out

123456789

45

0x56142dfba260

0x56142c265018

0x7ffc7e6b2£fd0

0x7ffc7e6b2fc8 <-- address of int variable on stack
0x7ffc7e6b2fcc <-- address of int variable on stack
0x7ffc7e6b2fcO (note addresses differ by 4)
0x7ffc7e6b2fc2

0x7ffc7e6b2fc4d

0x7ffc7e6b2fc6

Running example C program

$ gcc address.c

$./a.out

123456789

45

0x56142dfba260

0x56142c265018

0x7ffc7e6b2£d0

0x7ffc7e6b2fc8

0x7ffc7ebb2fcc

0x7ffc7e6b2fcO \

O0x7ffc7e6b2fc2 | <-- addresses of short variables on stack
0x7ffc7e6b2fcd I (note addresses differ by 2)
0x7ffc7e6b2fc6 /

Bitwise operations

Bitwise operations

» Bitwise operations operate on the binary (bit-level) representation of an
integer data value
» Logical operations: and, or, exclusive or, complement

» Shifts: left shift, right shift

Operations on boolean values

We can think of bit values (1 or 0) as being Boolean values (true or false)

Logical operations on bits a and b: Logical negation (“complement")
on a single bit a:

and or Xor
albla&blalbla”b a| "a
0,0 0 0 0 01
0|1 0 1 1 110
110 0 1 1
11 1 1 0

Bitwise operations in C

» The C bitwise operators perform logical operations (and, or, xor,
negation) on the bits of the binary representation(s) of integer values

» For example, x | y computes a result whose bits are formed by
applying the bitwise or operator (|) to each pair of bits in x and y
» Example code (bitwise or):
int x = 11;
int y = 40;
int z = x | y;
printf ("%d\n", z);
» What does this code do?

Explanation of bitwise or example

int x = 11;

int y = 40;

int z = x | y;
printf ("%d\n", 2z);

decimal binary

Explanation of bitwise or example

int x = 11;

int y = 40;

int z = x | y;
printf ("%d\n", 2z);

decimal binary
X 11=8+2+1 00001011

Explanation of bitwise or example

int x = 11;

int y = 40;

int z = x | y;
printf ("%d\n", 2z);

decimal binary
X 11=8+2+1 00001011
y 40 =32 + 8 00101000

Explanation of bitwise or example

int x = 11;

int y = 40;

int z = x | y;
printf ("%d\n", 2z);

decimal binary
X 11=8+2+1 00001011
y 40 =32 + 8 00101000

x|y 43=32+8+2+1 00101011

Explanation of bitwise or example

int x = 11;

int y = 40;

int z = x | y;
printf ("%d\n", 2z);

decimal binary
X 11=8+2+1 00001011
y 40 =32 + 8 00101000

x|y 43=32+8+2+1 00101011

Bit is 1 in result if corresponding bit is 1 in either operand value

» Shifts move bits to the left or right in the binary representation of a data
value
» Example code (left shift):
int x = 21;
int y = x << 3;
printf ("%d\n", y);
» What does this code do?

Explanation of left shift example

int x = 21;
int y = x << 3;
printf ("%d\n", y);

decimal binary

Explanation of left shift example

int x = 21;
int y = x << 3;
printf ("%d\n", y);

decimal binary
X 2l=16+4+1 00010101

Explanation of left shift example

int x = 21;
int y = x << 3;
printf ("%d\n", y);

decimal binary
X 2l=16+4+1 00010101
x << 3 168 =128 + 32 4 8 10101000

Explanation of left shift example

int x = 21;
int y = x << 3;
printf ("%d\n", y);

decimal binary
X 2l=16+4+1 00010101
x << 3 168 =128 + 32 4 8 10101000

Each bit in original value is shifted 3 places to the left; the lowest 3 bits of
result become 0

Why bitwise operations are useful

> Bitwise operations (logical operations and shifts) are useful because they
allow precise manipulations of data values at the level of individual bits:
» Selecting arbitrary bits
» Clearing or setting arbitrary bits

Set bit n of variable x to 1
x |= (1 << n);

Set bit n of variable x to 0
x &= ~(1 << n);

Get just the lowest n bits of variable x
x & ~(~0U << n)

	Data representation
	Addresses
	Bitwise operations

