
Lecture 2: Data representation, addresses

Phillipp Koehn, David Hovemeyer

January 23, 2026

601.229 Computer Systems Fundamentals



Welcome!

▶ Today:
▶ Data representation
▶ Addresses
▶ Bitwise operations



Data representation



Motto



Data representation

Let’s consider ways of representing numbers...



Roman Numerals

▶ Basic units
I V X L C D M
1 5 10 50 100 500 1000

▶ Additive combination of units
II III VI XVI XXXIII MDCLXVI MMXVI
2 3 6 16 33 1666 2016

▶ Subtractive combination of units
IV IX XL XC CD CM MCMLXXI
4 9 40 90 400 900 1971



Roman Numerals

▶ Basic units
I V X L C D M
1 5 10 50 100 500 1000

▶ Additive combination of units
II III VI XVI XXXIII MDCLXVI MMXVI

2 3 6 16 33 1666 2016

▶ Subtractive combination of units
IV IX XL XC CD CM MCMLXXI
4 9 40 90 400 900 1971



Roman Numerals

▶ Basic units
I V X L C D M
1 5 10 50 100 500 1000

▶ Additive combination of units
II III VI XVI XXXIII MDCLXVI MMXVI
2 3 6 16 33 1666 2016

▶ Subtractive combination of units
IV IX XL XC CD CM MCMLXXI
4 9 40 90 400 900 1971



Roman Numerals

▶ Basic units
I V X L C D M
1 5 10 50 100 500 1000

▶ Additive combination of units
II III VI XVI XXXIII MDCLXVI MMXVI
2 3 6 16 33 1666 2016

▶ Subtractive combination of units
IV IX XL XC CD CM MCMLXXI

4 9 40 90 400 900 1971



Roman Numerals

▶ Basic units
I V X L C D M
1 5 10 50 100 500 1000

▶ Additive combination of units
II III VI XVI XXXIII MDCLXVI MMXVI
2 3 6 16 33 1666 2016

▶ Subtractive combination of units
IV IX XL XC CD CM MCMLXXI
4 9 40 90 400 900 1971



Arabic Numerals

▶ Developed in India and Arabic world during the European Dark Age
▶ Decisive step: invention of zero by Brahmagupta in AD 628
▶ Basic units

0 1 2 3 4 5 6 7 8 9
▶ Positional system

1 10 100 1000 10000 100000 1000000



Why Base 10?



Base 2

Computer hardware is based on digital logic
▶ where digital voltages (high and low) represent 1 and 0



Base 2

Computer hardware is based on digital logic
▶ where digital voltages (high and low) represent 1 and 0



Base 2

▶ Decoding binary numbers

Binary number 1 1 0 1 0 1 0 1

Position 7 6 5 4 3 2 1 0
Value 27 26 0 24 0 22 0 20

128 64 0 16 0 4 0 1 = 213



Base 2

▶ Decoding binary numbers

Binary number 1 1 0 1 0 1 0 1
Position 7 6 5 4 3 2 1 0

Value 27 26 0 24 0 22 0 20

128 64 0 16 0 4 0 1 = 213



Base 2

▶ Decoding binary numbers

Binary number 1 1 0 1 0 1 0 1
Position 7 6 5 4 3 2 1 0
Value 27 26 0 24 0 22 0 20

128 64 0 16 0 4 0 1 = 213



Base 2

▶ Decoding binary numbers

Binary number 1 1 0 1 0 1 0 1
Position 7 6 5 4 3 2 1 0
Value 27 26 0 24 0 22 0 20

128 64 0 16 0 4 0 1 = 213



Clicker quiz 1

Clicker quiz omitted from public slides



Base 8

▶ Numbers like 11010101 are very hard to read
⇒ Octal numbers

Binary number 1 1 0 1 0 1 0 1
—– ——– ——–

Octal number 3 2 5

Position 2 1 0
Value 3 × 82 2 × 81 5 × 80

192 16 5 = 213
▶ ... but grouping three binary digits is a bit odd



Base 8

▶ Numbers like 11010101 are very hard to read
⇒ Octal numbers

Binary number 1 1 0 1 0 1 0 1
—– ——– ——–

Octal number 3 2 5
Position 2 1 0

Value 3 × 82 2 × 81 5 × 80

192 16 5 = 213
▶ ... but grouping three binary digits is a bit odd



Base 8

▶ Numbers like 11010101 are very hard to read
⇒ Octal numbers

Binary number 1 1 0 1 0 1 0 1
—– ——– ——–

Octal number 3 2 5
Position 2 1 0
Value 3 × 82 2 × 81 5 × 80

192 16 5 = 213
▶ ... but grouping three binary digits is a bit odd



Base 8

▶ Numbers like 11010101 are very hard to read
⇒ Octal numbers

Binary number 1 1 0 1 0 1 0 1
—– ——– ——–

Octal number 3 2 5
Position 2 1 0
Value 3 × 82 2 × 81 5 × 80

192 16 5 = 213
▶ ... but grouping three binary digits is a bit odd



Base 16

▶ Grouping 4 binary digits → base 24 = 16
▶ "Hexadecimal" (hex = Greek for six, decimus = Latin for tenth)

▶ Need characters for 10-15: use letters a-f
Binary number 1 1 0 1 0 1 0 1

————— —————
Hexadecimal number d 5
Position 1 0
Value 13 × 161 5 × 160

208 5 = 213



Base 16

▶ Grouping 4 binary digits → base 24 = 16
▶ "Hexadecimal" (hex = Greek for six, decimus = Latin for tenth)
▶ Need characters for 10-15:

use letters a-f
Binary number 1 1 0 1 0 1 0 1

————— —————
Hexadecimal number d 5
Position 1 0
Value 13 × 161 5 × 160

208 5 = 213



Base 16

▶ Grouping 4 binary digits → base 24 = 16
▶ "Hexadecimal" (hex = Greek for six, decimus = Latin for tenth)
▶ Need characters for 10-15: use letters a-f

Binary number 1 1 0 1 0 1 0 1
————— —————

Hexadecimal number d 5

Position 1 0
Value 13 × 161 5 × 160

208 5 = 213



Base 16

▶ Grouping 4 binary digits → base 24 = 16
▶ "Hexadecimal" (hex = Greek for six, decimus = Latin for tenth)
▶ Need characters for 10-15: use letters a-f

Binary number 1 1 0 1 0 1 0 1
————— —————

Hexadecimal number d 5
Position 1 0

Value 13 × 161 5 × 160

208 5 = 213



Base 16

▶ Grouping 4 binary digits → base 24 = 16
▶ "Hexadecimal" (hex = Greek for six, decimus = Latin for tenth)
▶ Need characters for 10-15: use letters a-f

Binary number 1 1 0 1 0 1 0 1
————— —————

Hexadecimal number d 5
Position 1 0
Value 13 × 161 5 × 160

208 5 = 213



Clicker quiz 2

Clicker quiz omitted from public slides



Examples
Decimal Binary Octal Hexademical

0
1
2
3
8
15
16
20
23
24
30
50
100
255
256



Examples
Decimal Binary Octal Hexademical

0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
8 1000 10 8
15 1111 17 f
16 10000 20 10
20 10100 24 14
23 10111 27 17
24 11000 30 18
30 11110 36 1e
50 110010 62 32
100 1100100 144 64
255 11111111 377 ff
256 100000000 400 100



Bytes and Words

▶ On all modern computers data is accessed in chunks of 8 bits: 1 byte
▶ Larger chunks of data (“words”) are formed from multiple bytes:
▶ 2 bytes = 16 bits
▶ 4 bytes = 32 bits
▶ 8 bytes = 64 bits

▶ Modern CPUs have instructions for doing operations on word-sized data
values



C data types

▶ The “primitive” C data types typically map onto machine word sizes
▶ . . . but unfortunately, not in a way that’s completely consistent across

different machines and compilers
▶ “Typical” representations of C data types:

Bytes used on. . .
Data type 32-bit systems 64-bit systems

char 1 1
short 2 2

int 4 4
long 4 8

(Note inconsistency in last row)



Portable integer types

▶ The stdint.h header file provides portable integer types providing an
exact number of bits: int32_t, uint32_t, int64_t, uint64_t, etc.

▶ Note that constant values are still a problem!
▶ For example, 0x100000000UL (232) is likely to be a valid on a 64-bit

system but not on a 32-bit system
▶ The “UL” suffix means “unsigned long”



Addresses



Memory and addresses

▶ Conceptually, memory (RAM) is a sequence of byte-sized storage locations
▶ Each byte storage location has an integer address
▶ 0 is the lowest address
▶ Highest address determined by number of address bits processor uses:
▶ 32-bit processors ⇒ addresses have 32 bits
▶ 64-bit processors ⇒ addresses have 64 bits



32 bit vs. 64 bit addresses

▶ 1 GB = 230, 1 TB = 240

▶ A 32-bit system can directly address 232 bytes (4 GB)
▶ Not that much memory by today’s standards!

▶ A 64-bit system can (in theory) directly access 264 = 17,179,869,184 GB
= 16,777,216 TB
▶ This is a huge address space
▶ Note that actual systems don’t support that much physical memory
▶ However, tens or hundreds of GB of physical memory is not uncommon



Alignment

▶ To store the value of an n-bit word in memory, n/8 contiguous bytes are
used

▶ The address of the first byte is the address of the overall word
▶ Typically, an n-byte word must have an address that is an exact multiple

of n (“natural” alignment)
▶ For example, the first byte allocated for an 8-byte word must have an

address that is an exact multiple of 8
▶ Attempt to load or store an n-byte word at an address that is not a

multiple of n is an unaligned access
▶ Best case: access works, reduced performance
▶ Worst case: runtime exception that kills the program



Visualizing alignment



Visualizing alignment



Visualizing alignment



Visualizing alignment



Visualizing alignment



C pointers

▶ Pointers in C are just memory addresses!
▶ The address-of operator (&), when applied to a variable, yields a pointer

to the variable (i.e., the address of the first memory byte that is part of
the variable’s storage)

▶ The dereference operator (*), when applied to a pointer value (address),
refers to the variable whose storage location is indicated by the address



Example C program

#include <stdio.h>
#include <stdlib.h>

long g;

int main(void) {
long* p = malloc(sizeof(long));
long x;
int a, b;
short c, d, e, f;
scanf("%ld %ld %ld %d %d %hd %hd %hd %hd",

p, &g, &x, &a, &b, &c, &d, &e, &f);
long sum = *p + g + x + a + b + c + d + e + f;
printf("%ld\n", sum);
printf("%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n",

p, &g, &x, &a, &b, &c, &d, &e, &f);
return 0;

}



Running example C program

$ gcc address.c
$ ./a.out
1 2 3 4 5 6 7 8 9
45
0x56142dfba260
0x56142c265018
0x7ffc7e6b2fd0
0x7ffc7e6b2fc8
0x7ffc7e6b2fcc
0x7ffc7e6b2fc0
0x7ffc7e6b2fc2
0x7ffc7e6b2fc4
0x7ffc7e6b2fc6



Running example C program

$ gcc address.c
$ ./a.out
1 2 3 4 5 6 7 8 9
45
0x56142dfba260 <-- address of malloc'ed buffer
0x56142c265018
0x7ffc7e6b2fd0
0x7ffc7e6b2fc8
0x7ffc7e6b2fcc
0x7ffc7e6b2fc0
0x7ffc7e6b2fc2
0x7ffc7e6b2fc4
0x7ffc7e6b2fc6



Running example C program

$ gcc address.c
$ ./a.out
1 2 3 4 5 6 7 8 9
45
0x56142dfba260
0x56142c265018 <-- address of global variable
0x7ffc7e6b2fd0
0x7ffc7e6b2fc8
0x7ffc7e6b2fcc
0x7ffc7e6b2fc0
0x7ffc7e6b2fc2
0x7ffc7e6b2fc4
0x7ffc7e6b2fc6



Running example C program

$ gcc address.c
$ ./a.out
1 2 3 4 5 6 7 8 9
45
0x56142dfba260
0x56142c265018
0x7ffc7e6b2fd0 <-- address of long variable on stack
0x7ffc7e6b2fc8
0x7ffc7e6b2fcc
0x7ffc7e6b2fc0
0x7ffc7e6b2fc2
0x7ffc7e6b2fc4
0x7ffc7e6b2fc6



Running example C program

$ gcc address.c
$ ./a.out
1 2 3 4 5 6 7 8 9
45
0x56142dfba260
0x56142c265018
0x7ffc7e6b2fd0
0x7ffc7e6b2fc8 <-- address of int variable on stack
0x7ffc7e6b2fcc <-- address of int variable on stack
0x7ffc7e6b2fc0 (note addresses differ by 4)
0x7ffc7e6b2fc2
0x7ffc7e6b2fc4
0x7ffc7e6b2fc6



Running example C program

$ gcc address.c
$ ./a.out
1 2 3 4 5 6 7 8 9
45
0x56142dfba260
0x56142c265018
0x7ffc7e6b2fd0
0x7ffc7e6b2fc8
0x7ffc7e6b2fcc
0x7ffc7e6b2fc0 \
0x7ffc7e6b2fc2 | <-- addresses of short variables on stack
0x7ffc7e6b2fc4 | (note addresses differ by 2)
0x7ffc7e6b2fc6 /



Bitwise operations



Bitwise operations

▶ Bitwise operations operate on the binary (bit-level) representation of an
integer data value

▶ Logical operations: and, or, exclusive or, complement
▶ Shifts: left shift, right shift



Operations on boolean values

We can think of bit values (1 or 0) as being Boolean values (true or false)

Logical operations on bits a and b:

and or xor
a b a & b a | b a ^ b
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

Logical negation (“complement”)
on a single bit a:

a ˜a
0 1
1 0



Bitwise operations in C

▶ The C bitwise operators perform logical operations (and, or, xor,
negation) on the bits of the binary representation(s) of integer values
▶ For example, x | y computes a result whose bits are formed by

applying the bitwise or operator (|) to each pair of bits in x and y
▶ Example code (bitwise or):

int x = 11;
int y = 40;
int z = x | y;
printf("%d\n", z);

▶ What does this code do?



Explanation of bitwise or example

int x = 11;
int y = 40;
int z = x | y;
printf("%d\n", z);

decimal binary

x 11 = 8 + 2 + 1 00001011
y 40 = 32 + 8 00101000

x | y 43 = 32 + 8 + 2 + 1 00101011

Bit is 1 in result if corresponding bit is 1 in either operand value



Explanation of bitwise or example

int x = 11;
int y = 40;
int z = x | y;
printf("%d\n", z);

decimal binary
x 11 = 8 + 2 + 1 00001011

y 40 = 32 + 8 00101000
x | y 43 = 32 + 8 + 2 + 1 00101011

Bit is 1 in result if corresponding bit is 1 in either operand value



Explanation of bitwise or example

int x = 11;
int y = 40;
int z = x | y;
printf("%d\n", z);

decimal binary
x 11 = 8 + 2 + 1 00001011
y 40 = 32 + 8 00101000

x | y 43 = 32 + 8 + 2 + 1 00101011

Bit is 1 in result if corresponding bit is 1 in either operand value



Explanation of bitwise or example

int x = 11;
int y = 40;
int z = x | y;
printf("%d\n", z);

decimal binary
x 11 = 8 + 2 + 1 00001011
y 40 = 32 + 8 00101000

x | y 43 = 32 + 8 + 2 + 1 00101011

Bit is 1 in result if corresponding bit is 1 in either operand value



Explanation of bitwise or example

int x = 11;
int y = 40;
int z = x | y;
printf("%d\n", z);

decimal binary
x 11 = 8 + 2 + 1 00001011
y 40 = 32 + 8 00101000

x | y 43 = 32 + 8 + 2 + 1 00101011

Bit is 1 in result if corresponding bit is 1 in either operand value



Shifts

▶ Shifts move bits to the left or right in the binary representation of a data
value

▶ Example code (left shift):
int x = 21;
int y = x << 3;
printf("%d\n", y);

▶ What does this code do?



Explanation of left shift example

int x = 21;
int y = x << 3;
printf("%d\n", y);

decimal binary

x 21 = 16 + 4 + 1 00010101
x << 3 168 = 128 + 32 + 8 10101000

Each bit in original value is shifted 3 places to the left; the lowest 3 bits of
result become 0



Explanation of left shift example

int x = 21;
int y = x << 3;
printf("%d\n", y);

decimal binary
x 21 = 16 + 4 + 1 00010101

x << 3 168 = 128 + 32 + 8 10101000

Each bit in original value is shifted 3 places to the left; the lowest 3 bits of
result become 0



Explanation of left shift example

int x = 21;
int y = x << 3;
printf("%d\n", y);

decimal binary
x 21 = 16 + 4 + 1 00010101

x << 3 168 = 128 + 32 + 8 10101000

Each bit in original value is shifted 3 places to the left; the lowest 3 bits of
result become 0



Explanation of left shift example

int x = 21;
int y = x << 3;
printf("%d\n", y);

decimal binary
x 21 = 16 + 4 + 1 00010101

x << 3 168 = 128 + 32 + 8 10101000

Each bit in original value is shifted 3 places to the left; the lowest 3 bits of
result become 0



Why bitwise operations are useful

▶ Bitwise operations (logical operations and shifts) are useful because they
allow precise manipulations of data values at the level of individual bits:
▶ Selecting arbitrary bits
▶ Clearing or setting arbitrary bits



Bitwise idioms

Set bit n of variable x to 1
x |= (1 << n);

Set bit n of variable x to 0
x &= ~(1 << n);

Get just the lowest n bits of variable x
x & ~(~0U << n)


	Data representation
	Addresses
	Bitwise operations

