Lecture 3: Integer representation

David Hovemeyer

January 28, 2026

601.229 Computer Systems Fundamentals

=N

S il:,’



Integer representation



Representing integers

» We've seen how to represent unsigned (nonnegative) integers
» Bit string intrepreted as a binary (base 2) number
» How to represent signed integers?
» Sign magnitude
» Ones’ complement
» Two’'s complement

» In examples that follow, we'll use 4-bit words
» Ideas will generalize to larger word sizes



Desired features for signed representation

What we want in a representation for signed integers:
» About half of encoding space used for negative values
» Each represented integer has a unique encoding as bit string
» Straightforward way to do arithmetic



Sign magnitude representation

Let most significant bit be a sign bit: 0—positive, 1—negative

Bit string value | Bit string value
0000 0 1000 -0
0001 1 1001 -1
0010 2 1010 -2
0011 3 1011 -3
0100 4 1100 -4
0101 5 1101 -5
0110 6 1110 -6
0111 7 1111 -7

Downsides: two representations of 0, arithmetic complicated by sign bit



Ones’ complement

Ones’' complement: to represent -x, invert all of the bits of x

Bit string value | Bit string value
0000 0 1000 -7
0001 1 1001 -6
0010 2 1010 -5
0011 3 1011 -4
0100 4 1100 -3
0101 5 1101 -2
0110 6 1110 -1
0111 7 1111 -0

Downsides: two representations of 0, slightly complicated arithmetic



Sign magnitude and ones’ complement are obsolete

» Sign magnitude and ones’ complement representations are not used for
integer representation by modern computers

» But, sign magnitude is used in floating point representation
» The rest of this lecture will discuss two’s complement



Two's complement

Two's complement: in w-bit word, the most significant bit represents —ow-1
E.g., when w = 4,
Representation ‘ Bit3 Bit2 Bitl Bit0

Unsigned 8 4 2 1
Two's complement | -8 4 2 1

Given bit string 1011,
» Unsigned, 1011 is8+2+1=11
» Two's complement, 1011 is —8+4+2+ 1= -5



Two's complement

Two's complement: in w-bit word, the most significant bit represents —ow-1

Bit string value | Bit string value
0000 0 1000 -8
0001 1 1001 -7
0010 2 1010 -6
0011 3 1011 -5
0100 4 1100 -4
0101 5 1101 -3
0110 6 1110 -2
0111 7 1111 -1

Note asymmetry of negative and positive ranges: -8 is represented, 8 isn't



Thinking about two's complement

Useful way to think about a w-bit two's complement representation:
» Bit w — 1 is the sign bit, 0—positive, 1—negative
» If sign bit is 0, usual unsigned interpretation
» If sign bit is 1, bits w — 2..0 indicate the “offset” from —2%~1



Two's complement example

Given w = 4, example bit string is m
» Sign bitis 1
» Offset from —23 is 011, which is 3 (2+1)
» 8+ 3=-5

So, 1011 represents -5



Clicker quiz

Clicker quiz omitted from public slides



Why two's complement?

The most important advantage of two's complement:



Why two's complement?

The most important advantage of two's complement:

Unsigned addition yields correct
result for signed values!



Why two's complement?

The most important advantage of two's complement:

Unsigned addition yields correct
result for signed values!

Wow!



Add two 8 bit integer values:

00101101



Add two 8 bit integer values:

00101101
+ 11111100




Add two 8 bit integer values:

00101101
+ 11111100
100101001




As unsigned values:

00101101 45
+ 11111100 252
100101001 297 (truncated to 41)




As signed two's complement values:

00101101 45
+ 11111100 -4
100101001 41




Subtraction via addition

» Two's complement negation: invert all bits, then add 1
» Example, negating 5

» Original value: 00000101

> Invert bits: 11111010

> Add one: 11111011

» Valueis-128 + 64 +32 4+ 16 +8+ 2+ 1=-5
» a— b can be computed as a+ —b

» |.e., invert b, then add to a



» Sometimes it is necessary to increase the number of bits in the
representation of a signed integer
» E.g., type cast or implicit conversion of a 16 bit short value to a 32 bit
int value
» In two's complement, this can be accomplished by sign extension:
replicate the original sign bit as many times as necessary
» This preserves the numeric value!
» Processors typically have dedicated instructions to perform sign
extension



Sign extension example

Example: extend 4 bit two's complement values 1011 and 0011 to 8 bits

Number of bits | Bit string Meaning
4 1011 -8+2+1=-5
8 11111011 | -128 4+ 64 +324+ 16 +8+2+1=-5
4 0011 24+1=3
8 00000011 24+1=3




Sign extension example program

#include <stdio.h>
void printbits(int x, int n) {
for (int i = n-1; i >= 0; i--) {
putchar(x & (1 << i) 7 '1' : '0');
}
putchar('\n');
}

int main(void) {
short s = -27987;
int i = (int) s; // <-- sign extension occurs here
printf ("%x*c", 16, ' ');
printbits(s, 16);
printbits(i, 32);
return O;



Sign extension example program (output)

$ gcc signext.c
$ ./a.out

1001001010101101
11111111111111111001001010101101



Clicker quiz!

Clicker quiz omitted from public slides



Extending unsigned values

Extending the representation of an unsigned value is straightforward:
unconditionally pad with O bits

Example: 4 bit unsigned value 1011 =8 +2 + 1 =11

As an 8 bit unsigned value, 00001011 =8+ 24+ 1 =11



General observation

In general, increasing the number of bits in the representation of an integer
(signed or unsigned) will preserve its value



Truncation

» Truncation: reducing the number of bits in the representation of an
integer
» In general, this will lose information and potentially change the value
» Truncation is done by chopping off bits from the left side of the bit string
» Whatever remains is the new representation



Truncation example

Example: convert signed 8 bit integer -14 to a 4 bit signed integer

Number of bits ‘ Bit string ‘ Meaning

8 11110010 | -128 + 64 + 32 + 16 + 2 = -14
4 0010 2



Truncation example program

#include <stdio.h>
void printbits(int x, int n) {
for (int i = n-1; i >= 0; i--) {
putchar(x & (1 << i) 7 '1' : '0');
}
putchar('\n');
}

int main(void) {
short s = -129;
char ¢ = s; // <-- truncation occurs here
printf ("s=Yd, c=%d\n", s, c);
printbits(s, 16);

printf ("%*c", 8, ' ');
printbits(c, 8);
return O;



Truncation example program (output)

$ gcc truncate.c
$ ./a.out
s=-129, c=127
1111111101111111
01111111

Explanation:

!is a signed 8 bit type

» short is a 16 bit signed type, char

» After truncation from 16 to 8 bits, the sign bit was 0, so the resulting
value became positive

» Look at the bit representations — convince yourself the values output by

printf make sense!

LCompiler-dependent, tested with gee 7.4.0 on x86-64 Linux



Conversions between signed and unsigned

» Another important type of conversion is between signed and unsigned
values

» Fundamentally, data in the computer's memory has no inherent meaning
» |t is up to the program to decide how to interpret data

» Conversions between signed and unsigned (without changing the number
of bits) do not change the underlying representation as bits



Signed /unsigned conversion examples

Example: bit pattern 10010110 as signed and unsigned 8 bit integer values
Signed: -128 + 16 + 4 + 2 = -106

Unsigned: 128 4+ 16 + 4 + 2 = 150



Signed/unsigned conversion example program

#include <stdio.h>
unsigned char parsebits(const char *s) {
unsigned char val = O;

char c;
while ((c = *s++)) {
val <<= 1;
if (¢ == '1") {val [=1; }
}
return val;

3

int main(void) {
unsigned char uc = parsebits("10010110");

char ¢ = (char) uc; // <-- conversion from unsigned to signed
printf ("%u %d\n", uc, c);
return O;



Signed/unsigned conversion example program (output)

$ gcc comvert.c
$ ./a.out
150 -106



Considerations for writing programs



Programming considerations

» Semantics of integer values and data types can be surprisingly subtle
» C and C++ further complicate matters in several ways:

» Data type sizes vary

» Integer representation not actually specified by the language!

» Some operations the program could perform have semantics that are
implementation-defined or (worse) undefined

» Recommendation: be very careful!



Implicit conversions

» In C, there are many contexts in which implicit conversions will occur
» Including ones where information can be lost!

» It's important to know where implicit conversions happen and to
understand their effects

» |t's not a bad idea to use explicit type casts so that conversions are
explicit, even if they aren't strictly necessary

» Semantics of program are more obvious, avoid unintended behaviors



» Sign extension can sometimes have surprising consequences (bits that you
thought would be 0 become 1)

» Values belonging to unsigned types (unsigned char, unsigned short,
etc.) are never sign extended



	Integer representation
	Considerations for writing programs

