Lecture 5: Floating point

Philipp Koehn, David Hovemeyer

January 30, 2026

601.229 Computer Systems Fundamentals

=N

S il:,’

Floating point numbers

» So far, we only dealt with integers
» But there are other types of numbers

» So far, we only dealt with integers
» But there are other types of numbers

» Rational numbers (from ratio ~ fraction)
> 3/4 =075
> 10/3 = 3.33333333....

» So far, we only dealt with integers

» But there are other types of numbers

» Rational numbers (from ratio ~ fraction)
> 3/4 =0.75
> 10/3 = 3.33333333....

» Real numbers

> 7 = 3.14159265...
> e = 2.71828182...

Very Large Numbers

» Distance of sun and earth
150,000, 000, 000 meters
» Scientific notation
1.5 x 10! meters
» Another example: number of atoms in 12 gram of carbon-12 (1 mol)
6.022140857 x 10%

Binary Numbers in Scientific Notation

» Example binary number (7 again)
11.0010010001
» Scientific notation
1.10010010001 x 2!
» General form
1.x x 27

Representation

» |IEEE 754 floating point standard
» Uses 4 bytes

31[30[29]...[24]23][22]21]..|1]0
s exponent fraction
1 bit 8 bits 23 bits

» Exponent is offset with a bias of 127
e.g. 27 — exponent = -6 + 127 = 121

Conversion into Binary

» 1 = 3.14159265
» Number before period: 319 = 11,
» Conversion of fraction .14159265

Conversion into Binary

» 7 = 3.14159265
» Number before period: 319 = 11,
» Conversion of fraction .14159265
Digit Calculation
0.14159265 x 2 |

Conversion into Binary

» 7 = 3.14159265
» Number before period: 319 = 11,
» Conversion of fraction .14159265
Digit Calculation
0.14159265 x 2 |
0 0.2831853

Conversion into Binary

» 7 = 3.14159265
» Number before period: 319 = 11,
» Conversion of fraction .14159265
Digit Calculation
0.14159265 x 2 |
0 0.2831853 x 2 |
0 0.5663706

Conversion into Binary

» 7 = 3.14159265

» Number before period: 319 = 11,

» Conversion of fraction .14159265

Digit Calculation
0.14159265 x 2 |

0 0.2831853 x 2 |
0 0.5663706 x 2 |
1 0.1327412

» Number before period: 319 = 11,
» Conversion of fraction .14159265
Digit Calculation

O OO OO OO

o

» Binary: 11.001001000011111101101

0.14159265 x 2 |

0.2831853 x 2 |
0.5663706 x 2 |
0.1327412 x 2 |
0.2654824 x 2 |
0.5309648 x 2 |
0.0619296 x 2 |
0.1238592 x 2 |
0.2477184 x 2 |
0.4954368 x 2 |
0.9908736 X 2 —

Conversion into Binary

» 7 = 3.14159265

Digit Calculation

1

RO MR RORRKHRHR

0.9817472 x 2 |
0.9634944 x 2 |
0.9269888 x 2 |
0.8539776 x 2 |
0.7079552 X 2 |
0.4159104 x 2 |
0.8318208 x 2 |
0.6636416 x 2 |
0.3272832 x 2 |
0.6545664 x 2 |
0.3091328 X 2

Encoding into Representation

> T
1.1001001000011111101101 x 21!
» Encoding

Sign | Exponent Fraction
0 | 10000000 | 1001001000011111101101

» Note: leading 1 in fraction is omitted

Clicker quiz!

Clicker quiz omitted from public slides

See the representation of a float

#include <stdio.h>

int main(void) {
float x;
scanf ("%f", &x);
unsigned *p = (unsigned *) &x;

for (int i = 31; i >= 0; i-—-) {
printf("%c", (xp & (1 << 1)) 7 '1' : '0');
if (1 == 31 || i == 23) { printf(" "); }
}
printf("\n");

return O;

See the representation of a float

$ gcc explain.c
$ echo '-18.8203125' | ./a.out
1 10000011 00101101001000000000000

Special Cases

» Zero

Special Cases

» Zero
» Infinity (1/0)
» Negative infinity (-1/0)

Special Cases

» Zero

» Infinity (1/0)

» Negative infinity (-1/0)

» Not a number (0/0 or co — 00)

Exponent Fraction Object
0 0 zero
0 >0 denormalized number
1-254 anything floating point number
255 0 infinity
255 >0 NaN (not a number)

(denormalized number: 0.x x 271%)

Clicker quiz!

Clicker quiz omitted from public slides

Double Precision

» Single precision = 4 bytes
Sign Exponent Fraction
1 bit 8 bits 23 bits
» Double precision = 8 bytes

Sign Exponent Fraction
1 bit 11 bits 52 bits

Addition

Addition with Scientific Notation

» Decimal example, with 4 significant digits in encoding
» Example
0.1610 + 99.99
» In scientific notation
1.610 x 107! +9.999 x 10!

Addition with Scientific Notation

» Decimal example, with 4 significant digits in encoding
» Example
0.1610 + 99.99
» In scientific notation
1.610 x 1071 +9.999 x 10*
» Bring lower number on same exponent as higher number
0.01610 x 10 +9.999 x 10!

Addition with Scientific Notation

» Round to 4 significant digits
0.016 x 10! +9.999 x 10?

Addition with Scientific Notation

» Round to 4 significant digits
0.016 x 10! +9.999 x 10!
» Add fractions
0.016 4 9.999 = 10.015

Addition with Scientific Notation

» Round to 4 significant digits
0.016 x 10 +9.999 x 10?
» Add fractions
0.016 + 9.999 = 10.015
» Adjust exponent
10.015 x 10! = 1.0015 x 102

Addition with Scientific Notation

» Round to 4 significant digits
0.016 x 10! +9.999 x 10!
» Add fractions
0.016 4 9.999 = 10.015
» Adjust exponent
10.015 x 10* = 1.0015 x 102
» Round to 4 significant digits
1.002 x 102

Binary Floating Point Addition

» Numbers

_ 1
0.510 = 210

Binary Floating Point Addition

» Numbers

1 1
0.510 = 210 ~ 2110

Binary Floating Point Addition

» Numbers

1 1
0.510 = 210 — 2110 —

Binary Floating Point Addition

» Numbers

= =0.1, = 1.000, x 271

1
0510_50_2110

Binary Floating Point Addition

» Numbers

— — 1
1o = 2,0 = 0.1 = 1.000; x 2~

Binary Floating Point Addition

» Numbers

— — 1
10_2110 0.1, = 1.0005 X 2~

1
2
—0.437510 = — ., = —%,, = 0.0111,

Binary Floating Point Addition

» Numbers

— — 1
10_2110 0.1, = 1.0005 X 2~

1
2
—0.4375y0 = — & = —F% =0.0111, = —1.110, x 272

Binary Floating Point Addition

» Numbers
0510_%0:2110—012_10002><2 !
—0.437510 = — =, = —%,, = 0.0111; = —1.110, x 272

» Bring lower number on same exponent as higher number
—1.110 x 272 = —0.111 x 27!

Binary Floating Point Addition

» Numbers
0510_%0:2110—012_10002><2 !
—0.437510 = — =, = —%,, = 0.0111; = —1.110, x 272

» Bring lower number on same exponent as higher number
—1.110 x 272 = —0.111 x 27!
» Add the fractions
1.0005 x 271+ (—0.111 x 271) = 0.001 x 27!

Binary Floating Point Addition

» Numbers
0510_%0:2110—012_10002><2 !
—0.437510 = — =, = —%,, = 0.0111; = —1.110, x 272

» Bring lower number on same exponent as higher number
—1.110 x 272 = —0.111 x 271
» Add the fractions
1.0005 x 271+ (—0.111 x 271) = 0.001 x 27!
» Adjust exponent
0.001 x 271 =1.000 x 274

compare components:
shift smaller number to right until
exponents match

add fractions

normalize the sum:

—» . q
either increase or decrease exponent

overflow
underflow?

round fraction to
appropriate number of bits

Multiplication

Multiplication with Scientific Notation

» Example: multiply 1.110 x 10 and 9.200 x 107°

Multiplication with Scientific Notation

» Example: multiply 1.110 x 10 and 9.200 x 107°
1.110 x 101 x 9.200 x 107°

Multiplication with Scientific Notation

» Example: multiply 1.110 x 10 and 9.200 x 107°
1.110 x 101 x 9.200 x 107°

1.110 x 9.200 x 107° x 101%°

Multiplication with Scientific Notation

» Example: multiply 1.110 x 10 and 9.200 x 107°
1.110 x 101 x 9.200 x 107°

1.110 x 9.200 x 107° x 101%°
1.110 x 9.200 x 105+10

Multiplication with Scientific Notation

» Example: multiply 1.110 x 10 and 9.200 x 107°
1.110 x 101 x 9.200 x 107°

1.110 x 9.200 x 107° x 101%°

1.110 x 9.200 x 105+
» Add exponents
—54+10=5

Multiplication with Scientific Notation

» Example: multiply 1.110 x 10 and 9.200 x 107°
1.110 x 101 x 9.200 x 107°

1.110 x 9.200 x 107° x 101%°

1.110 x 9.200 x 107°*10
» Add exponents
—-54+10=5
» Multiply fractions
1.110 x 9.200 = 10.212

Multiplication with Scientific Notation

» Example: multiply 1.110 x 10 and 9.200 x 107°
1.110 x 101 x 9.200 x 107°

1.110 x 9.200 x 107° x 101%°

1.110 x 9.200 x 107°*10
» Add exponents
—-54+10=5
» Multiply fractions
1.110 x 9.200 = 10.212
» Adjust exponent
10.212 x 10® = 1.0212 x 108

Binary Floating Point Multiplication

» Example
1.000 x 271 x —1.110 x 272

Binary Floating Point Multiplication

» Example
1.000 x 271 x —1.110 x 272
» Add exponents
—1+4+(-2)=-3

Binary Floating Point Multiplication

» Example
1.000 x 271 x —1.110 x 272
» Add exponents
—14(-2)= -3
» Multiply fractions
1.000 x —1.110 = —1.110

Binary Floating Point Multiplication

» Example
1.000 x 271 x —1.110 x 272
» Add exponents
—14(-2)= -3
» Multiply fractions
1.000 x —1.110 = —1.110

1000 x 1110 = 1110000

Binary Floating Point Multiplication

» Example
1.000 x 271 x —1.110 x 272
» Add exponents
—14(-2)= -3
» Multiply fractions
1.000 x —1.110 = —1.110
1000 x 1110 = 1110000

—1.110000

Binary Floating Point Multiplication

» Example
1.000 x 271 x —1.110 x 272
» Add exponents
—14(-2)= -3
» Multiply fractions
1.000 x —1.110 = —1.110

1000 x 1110 = 1110000

—1.110000
» Adjust exponent (not needed)
—1.110 x 278

multiply fractions

- normalize the product:
either increase or decrease exponent

v

no

round fraction to
appropriate number of bits

	Floating point numbers
	Addition
	Multiplication

